Unoccupied band splitting in metallic epitaxial IrO$_2$ film due to SOC

Author: Woojin Kim1,2, Soyeun Kim1,2, Chang Hee Sohn1,2, Cheng-Tai Kuo1,2, Seung Chul Chae3, Tae Won Noh1,2

Affiliation:
1Center for Correlated Electron Systems, Institute for Basic Science, Republic of Korea
2Department of Physics and Astronomy, Seoul National University, Republic of Korea
3Department of Physics Education, Seoul National University, Republic of Korea

Materials based on 5d transition metal oxides with strong spin-orbit coupling (SOC) have been predicted to exhibit a variety of nontrivial electronic properties, such as the Mott insulator, Weyl semimetallic state, topologically insulating behavior, and novel superconducting states [1]. Moreover, heavy transition metals and their oxides, such as IrO$_2$ have been receiving increasing attention in the as promising materials for application in spintronics [2] thanks to pronounced SOC effects in these compounds.

In connection with this, a deep understanding of the ground state of such materials is of high value. Particularly, an ongoing controversy about the role of the strong SOC in the metallic state of IrO$_2$ needs to be resolved. A conventional interpretation of a metallic state of this material does not involve SOC [3], however the result of GGA+U+SO calculations demonstrated a dominant role of strong spin-orbit coupling in IrO$_2$ [4]. A key piece of information would be provided by the results of the experimental studies of the band structure of this compound.

We have studied the electronic structure of IrO$_2$ using optical spectroscopy and X-ray photo electron spectroscopy. XPS and UPS measurement were done on single phase, epitaxial IrO$_2$ film, reproducing the general features of a recent band structure calculation. The optical measurement for E//c axis and E ⊥ c axis at room temperature have been performed in a photon energy range between 3.5 meV ~ 5.5 eV. A clear peak near 0.5 eV has been observed on our optical conductivity spectra. These results can explain a formation of a band above the Fermi level due to SOC and are in good agreement with recent GGA+U+SO band structure calculations.