Superfluid density and microwave conductivity of FeSe and Co-doped FeSe

Meng Li\(^1\), Nicholas R Lee-Hone\(^2\), Shun Chi\(^1\), Ruixing Liang\(^1\), Walter N Hardy\(^1\), Doug A Bonn\(^1\), Erol Girt\(^2\) and David M Broun\(^2\)

1. University of British Columbia 2. Simon Fraser University

Graphs and Figures:

- Upper left: Graph showing \(\sigma_0\) vs. temperature for Co-FeSe (202 MHz) and Co-FeSe (658 MHz).
- Upper right: Graph showing \(\gamma/2\pi\) vs. frequency for Co-FeSe (202 MHz) and Co-FeSe (658 MHz) compared to pure FeSe.
- Lower left: Graph showing \(\sigma_0\) vs. temperature for pure FeSe (202 MHz) and pure FeSe (658 MHz), Co-FeSe (202 MHz), and Co-FeSe (658 MHz).
- Lower right: Graph showing \(1/\sigma_0 = \omega\gamma/2\pi\) vs. temperature for Co-FeSe (202 MHz), Co-FeSe (658 MHz), pure FeSe (202 MHz), and pure FeSe (658 MHz).
- Lower middle: Graph showing \(\rho^2 = \xi_0^2(T)/\xi(T)\) for band 1 and band 2 in Co-FeSe with \(\Delta_1\) and \(\Delta_2\).

Equation:

\[\rho^2 = \xi_0^2(T)/\xi(T) \]