1.1 **GENERAL**

1.2 **Related SFU Technical Requirements**

1.3 **System Description**

2.1 **MATERIAL AND DESIGN REQUIREMENTS**

2.2 **Responsibilities**

2.3 **Sanitary Sewer Standards**

2.4 **Sanitary Sewer Connections**

2.5 **Sanitary Sewer Discharge**

1.1 GENERAL

1.2 Related SFU Technical Requirements

1. **33 82 01 CCTV Pipeline Inspection**

1.3 System Description

1. The campus has a dedicated sanitary sewer system connects to the Burnaby sewer system.

2.1 MATERIAL AND DESIGN REQUIREMENTS

2.2 Responsibilities

1. SFU is responsible for operation, maintenance, and overall stewardship of the sanitary sewer distribution server on campus.

2. The project Designer must incorporate all specific requirements for design and materials and execution of this section into the contract drawings in the form of job-specific notes. Only making reference to SFU Technical Requirements in the drawings is not sufficient.

2.3 Sanitary Sewer Standards

1. The latest revisions of the following standards shall apply to sanitary sewers at SFU:

 1. City of Burnaby Engineering Design Criteria
 2. BC Master Municipal Construction Documents (MMCD).
 3. GVRD Sewer Use Bylaw No. 164 - including Schedules A, B, C, and D.
 4. BC Provincial Health Act.

2. Should there be discrepancies in the above standards or with this document, the City of Burnaby Design Criteria will prevail with the SFU Facilities Mechanical Superintendents approval.

2.4 Sanitary Sewer Connections

1. The first step to install any new or substantially modified connections to the sanitary sewer system is to seek project approval from SFU Facilities.

2. Any new connections to the sanitary sewer system will be reviewed for consistency with the existing sewer infrastructure.

3. A Plumbing Permit is required to meet provisions of the B.C. Building Code Plumbing Provisions. It is preferred all communications with the City of Burnaby be channeled through SFU Facilities.

2.5 Sanitary Sewer Discharge

1. As part of the development design submission, the Designer shall provide the following:

 1. Estimates on the number and types of plumbing fixtures proposed in the buildings (i.e. low-flow vs. conventional).
2 The waste stream must be fully characterized by type and quantity.
.3 The design flows must be identified for all pipe reaches.
.4 Any chemical or biological materials must be fully disclosed and addressed in the design.
.5 All waste being discharged shall be in compliance with the GVRD Sewer Use Bylaw No. 164. A materials handling and disposal management strategy report must also be submitted for all waste which is not in compliance.
.6 The sanitary discharge characterization may be included in the drawing notes of the mechanical or civil design drawings for the development.

2.6 Sanitary Sewer Design

.1 Sanitary sewer systems shall be designed using the Peak Wet Weather Flow (PWWF). The PWWF flow shall be the sum of the Peak Dry Weather Flow (PDWF), infiltration flow, and pumped flow.

.2 The PDWF shall be the product of the Average Daily Flow (ADF) and the peaking factor. The minimum ADF rates shown in Table 2.5.2 shall be used:

<table>
<thead>
<tr>
<th>Flow Category</th>
<th>Description</th>
<th>Category Code</th>
<th>Average Daily Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family Residential</td>
<td>Housing for families, post graduate couples, professional, faculty and staff.</td>
<td>RES-F</td>
<td>325 Lpcd</td>
</tr>
<tr>
<td>Student Residential</td>
<td>Housing for students – apartments, dormitories, shared units.</td>
<td>RES-S</td>
<td>230 Lpcd</td>
</tr>
<tr>
<td>Office</td>
<td>Administrative and academic offices.</td>
<td>OFF</td>
<td>90 Lpcd</td>
</tr>
<tr>
<td>Classrooms</td>
<td>Classrooms, lectures, teaching labs, student and community activities.</td>
<td>CL</td>
<td>90 Lpcd</td>
</tr>
<tr>
<td>Research Facilities</td>
<td>Research and processing.</td>
<td>RSH</td>
<td>90 Lpcd</td>
</tr>
<tr>
<td>Mixed Building Use</td>
<td>Mixed use of classrooms, lecture halls, labs, research, administration and academic.</td>
<td>M-RCO</td>
<td>90 Lpcd</td>
</tr>
<tr>
<td>Library</td>
<td>Libraries.</td>
<td>LIBRY</td>
<td>90 Lpcd</td>
</tr>
<tr>
<td>Medical/ Clinical</td>
<td>Clinics, medical sciences research and teaching.</td>
<td>MEDIC</td>
<td>4 L/m²</td>
</tr>
<tr>
<td>Animal Sciences</td>
<td>Livestock holding for research purposes.</td>
<td>ANIMAL</td>
<td>7.5 L/m²</td>
</tr>
<tr>
<td>Assembly</td>
<td>Visitor oriented buildings for conferences, events, and cultural shows.</td>
<td>ASSM</td>
<td>16 L/m²</td>
</tr>
<tr>
<td>Food Services</td>
<td>Dominant floor area designed for preparing and serving food services.</td>
<td>FOOD</td>
<td>100 L/m² dining area</td>
</tr>
<tr>
<td>Hospital</td>
<td>Hospital.</td>
<td>HOSP</td>
<td>680 L/bed or 7 L/m²</td>
</tr>
<tr>
<td>Other Uses</td>
<td>No distinct common use or other than described above.</td>
<td>OTHER</td>
<td>Specifially determined for use</td>
</tr>
</tbody>
</table>

.3 The ADF values listed above shall be considered minimum values. The varied building uses and activities at SFU may produce unique sewage flow rates. The Developer is responsible to ensure that flow rates are computed in accordance with the specific size and activities of the proposed facility. All pertinent information shall be provided on the design drawings as
.4 The PDWF shall be computed using the Harmon Peaking Formula.

.5 An infiltration rate of 500 litres per pipe diameter (m) per Length (m) per day shall be added to the PDWF to determine the PWWF.

.6 Sanitary sewer shall flow only by gravity into SFU sanitary system. Only under unique circumstances will pumped sewage be considered, but a request for a permission to do so shall be submitted to SFU Facilities with an explanation why the sanitary sewer cannot run by gravity, the proposed pump capacity (L/s) at operating head (kPa), a diagram showing pump curve with the superimposed piping system curve at operating flow and head and sump dimensions with elevations at which pump starts and stops. Sump volume between pump start and stop elevations shall be sized so that the maximum number of On/Off cycles does not exceed six per hour.

.7 Gravity sewers shall be sized using the Manning’s Formula using an “n” value of 0.011 for PVC or 0.013 for concrete. New gravity sewers shall be sized such that the PWWF depth will not exceed 50% of the full depth of the pipe, with a resulting minimum flow velocity of 0.6 m/s.

.8 Force mains shall be sized using the Hazen-Williams formula using a “C” value of 100. Force mains shall have a minimum pipe size of 100 mm and designed for a minimum velocity of 0.9 m/s.

.9 When extending the existing trunk lines, sufficient size, depth and slope of the sewer shall be maintained to facilitate the future extension of service in accordance with the Sanitary Sewer Master Servicing Plan.

.10 A minimum pipe size of 200 mm shall be used for gravity service mains in residential areas and 250 mm in research / industrial areas. A minimum pipe size of 150 mm shall be used for service connections.

.11 Regardless of pipe slope and capacity, the downstream pipe shall be of equal or larger diameter. No downsizing is permitted.

.12 Manholes at maximum 100 m spacing shall be installed at each branch connection and each change of direction. Top of manholes shall be 150 mm above the ground in all landscaped areas, otherwise flush with surface. Pipe shall be straight between manholes.

.13 All service connections shall connect to the service main with a manhole.

.14 The length of service between the building face to the first sanitary sewer connecting manhole shall be a maximum 75 m.

.15 A minimum 750 mm horizontal clearance is required where the sanitary sewer is installed within a common trench with the storm sewer. If the invert of the sanitary sewer varies significantly from the storm sewer, the Designer shall give special consideration to the horizontal spacing.

.16 When crossing electric duct bank, run pipe below electrical duct bank with minimum 150 mm vertical clearance from the bottom of electric duct bank. Crossing angle shall be between 45° degree and 90° degree.

.17 Where drop manholes are required, drops shall be outside, with clean-outs.
.18 All manholes shall be benched and have a minimum drop of 30 mm. The drop shall be increased to 50 mm for deflection angles exceeding 45° degree.

2.7 Materials

.1 Unless otherwise approved in writing by the City of Burnaby, only the following pipe material shall be used for the gravity sanitary sewer system:

.1 PVC, class SDR 28 (150 mm diameter and smaller) and SDR 35.
.2 Concrete (reinforced C76 required for all pipes 600 mm in diameter and larger).
.3 PVC piping is preferred for all piping 450 mm in diameter or smaller.

.2 Unless otherwise approved in writing by the City of Burnaby, only the following pipe material shall be used for sanitary sewer force mains:

.1 PVC, class C900 (300 mm diameter and smaller) and C905.
.2 Ductile Iron (DI), class C151.
.3 PVC piping is preferred; therefore, DI pipe shall only be approved under unique circumstances.

3.1 EXECUTION REQUIREMENTS

.1 Sanitary sewer works and appurtenances shall be installed in accordance with the current MMCD standards and specification, unless otherwise noted.

.2 If temporary bypass pumping is required, the following items are required:

.1 Contractor to provide notice of work to residents minimum 1 week prior to commencing (date on letter).
.2 Contractor shall install temporary bypass pumping system around the designated sewer sections in accordance with pre-submitted arrangement.
.3 Pumps and bypass lines shall be of adequate capacity to accommodate predetermined flows as specified in the contract documents. A “duplex” pump system is to be used to provide 100% redundancy.
.4 Contractor to take all necessary precautions to prevent spills to the environment or backup of sewerage onto private property. In the event of a spill the Contractor shall be responsible for immediate clean-up operation and remediation of damaged property.
.5 Contractor shall report any spills and back-ups to SFU Facilities immediately.

.3 Minimum cover on all sanitary sewers shall be 1.0 meters in accordance with the MMCD standards. Where no future main line extension or connection of services is required, and where no traffic road exists or in future will exist, minimum cover may be reduced to 600 mm with special approval.

.4 All pipe surround material shall consist of clean granular MMCD Type 1 bedding.

.5 Native backfill may be used in non-traveled area if free of rock greater than 25 mm in boulevards and easement areas only. Approval by SFU Facilities is required.

.6 All gravity sanitary sewer systems shall be low pressure air tested in accordance with the MMCD Section 02731, Clause 3.14.

.7 Prior to covering the pipe, all installed and bedded pipe shall be inspected by SFU Facilities. The Contractor shall provide written notification to SFU Facilities and the City of Burnaby.
.8 Records of pipe sizes and inverts shall be provided to SFU Facilities; in accordance with Sections 01 78 39 Project Record Documents and 33 00 10 Underground Utilities Services of these guidelines.

.9 Where notification requirements are not met, services may need to be re-excavated for inspection and/or testing upon request of SFU Facilities.

END OF SECTION