Errata

David A. Sivak

DNA BENDING ELASTICITY (2009) [1]

The first equation on page 15 in 2.3.2 Quadratic Bending Energy should read (corrections in bold)

\[
\beta E_i^{\text{bend}} = \frac{1}{2} \ell_P \left| \dot{\hat{t}}_{i+1} - \dot{\hat{t}}_i \right|^2 = \frac{1}{2} \ell_P |\kappa_i|^2 = \frac{\ell_P}{d} (1 - \cos \theta_i)
\]

MEASURES OF TRAJECTORY ENSEMBLE DISPARITY IN NONEQUILIBRIUM STATISTICAL DYNAMICS (2011) [2]

The final equation of Eq.(32) should read

\[
\text{Chernoff}_{1-\alpha} \left(P[z|\Lambda]; P[\tilde{z}|\tilde{\Lambda}] \right) = \alpha (1 - \alpha) \beta W_0
\]

THERMODYNAMIC METRICS AND OPTIMAL PATHS (2012) [3]

Para beginning “The integral of the excess power...” on page 3: not our most elegant prose. What we are trying to say is that we want to imagine \(\frac{d\lambda}{dt} \) (velocity of control parameter changes as function of current control parameter values) being inversely proportional to total time allowed for the transition changes (\(\Delta t \)). The excess work should scale as \((\Delta t)^{-1} \) and the excess power at any point \(\lambda \) should scale as \((\Delta t)^{-2} \).

The inline equation between Eqs. (6) and (7) is missing a minus sign and should read: \(\chi_{ij}(t) \equiv -\beta d \Sigma_{ij}^{(\lambda(t_0))}(t)/dt \).

Eq. (15): The Fisher information is really fundamentally defined for any parametrizable probability distribution. Thus the \(\pi \)'s (defined in Eq. 1 as equilibrium probabilities) in the equation should really be \(p \), representing any arbitrary distribution parametrized by \(\lambda \). It is only in the next sentence, when we specialize to the case of thermal equilibrium, that we get to equilibrium \(\pi \)'s.

THERMODYNAMICS OF PREDICTION (2012) [4]

Eq. (16): middle term should have \(x_{t+1} \) instead of \(x_t \).

THERMODYNAMIC GEOMETRY OF MINIMUM-DISSIPATION DRIVEN BARRIER CROSSING (2016) [5]

Fig. 1 caption: \(E_t(x, x_s) \) should instead read \(E_s(x, x_s) \).

Fig. 4c: y-axis label should read \(k_B T \zeta(x_s) \) instead of \(\zeta(x_s) \).

