Rational Truth-Avoidance and Self-Esteem

David Andolfatto, Steeve Mongrain and Gordon Myers

May 2007
Rational Truth-Avoidance and Self-Esteem*

David Andolfatto
*Simon Fraser University
Department of economics
dandolfa@sfu.ca
(604) 291-5825

Steeve Mongrain
*Simon Fraser University
Department of economics
mongrain@sfu.ca
(604) 291-3547

Gordon Myers
*Simon Fraser University
Department of economics
gmmyers@sfu.ca
(604) 291-3409

May 9, 2007

Abstract

We assume that people have beliefs about their abilities, that these generate self-esteem, and that self-esteem is valued intrinsically. Individuals face two choices; one of which strictly dominates the other in a pecuniary sense, but necessarily involves gathering information concerning one’s (unobserved) ability. We lay out the circumstances under which an individual may find it rational to reject the dominant choice; an act which, in social psychology is described as avoiding the situation, but which we label truth-avoidance. We find that the incentive to avoid the truth is increasing in income and decreasing in self-esteem, the perceived accuracy of one’s self-assessment, and the role which luck plays in generating opportunities.

Keywords: self-esteem, confidence, signal-extraction, truth-avoidance.
JEL: D83, D1

*We would like to thank Atsu Amegashie, Stéphane Auray, Samuel Danthine, Zane Spindler and participants of the 2005 World Congress of the Econometric Society, 2004 Journée du CIRPÉE and of the 2003 Queen’s university public economics workshop for their comments and suggestions. Each author acknowledges the financial support of SSHRC. Corresponding author: Steeve Mongrain. Authors’ address: Simon Fraser University, Department of economics, Burnaby, BC, Canada, V5A 1S6. Authors’ fax: (604) 291-5944.
1 Introduction

In the standard economic model of individual decision-making, psychological factors play no role in understanding human behavior. While this approach has proved useful for predicting and interpreting behavior in a wide variety of contexts, psychologists have apparently identified several phenomena that are not so easily understood under the conventional economic paradigm.

The focus of this paper concerns one such phenomenon, labeled situation-avoidance by social psychologists; i.e., see Crocker and Park (2003, p. 299). To an economist, situation-avoidance might be better labeled as truth-avoidance, as the phenomenon concerns an action (or inaction) that purposely avoids the acquisition of economically valuable information relating to one's personal characteristics—even when the cost of acquiring such information is zero. Needless to say, such behavior is logically inconsistent with the basic premises of conventional economic theory. To social psychologists, however, truth-avoidance makes perfect sense—once it is recognized that individuals appear to care directly about how they view themselves; that the acquisition of new information can affect this view; and that human behavior appears to be governed, at least to some extent, by a concern for protecting or enhancing one's self-image. Avoiding the situation (truth-avoidance) is considered the first line of defense among self-esteem management strategies (see Hoyle et. al. 1999, and Crocker and Park, 2003).

While one could obviously spend a great deal of time debating the relative merits of these two disparate views, this is not our concern here. Instead, our approach is to take the psychologists’ view seriously and at face value. We do this by embedding the underlying psychological assumptions in an otherwise standard economic model. We then investigate and evaluate the logical implications of our hybrid theory.

Our economic model is modified by extending the commodity space over which preferences are defined to include an object that reflects an individual’s (rational) estimate of his own (unobserved) ability. We label this object self-esteem. Individuals are confronted with two choices, one of which strictly dominates the other in a pecuniary sense. The dominant strategy is necessarily associated with gathering information concerning one’s (unobserved) ability. The dominated strategy (truth-avoidance) foregoes an obvious pecuniary gain and reveals no information. We restrict belief-formation to be rational (in the sense of respecting Baye’s rule). As such, individual actions (or inactions) influence the evolution of one’s self-assessment over time. For individuals that do not value self-esteem, the evolution of this self-assessment is immaterial (the dominant strategy is always preferred). However, under some very specific circumstances (to be described below), we demonstrate that truth-avoidance can be consistent with rational behavior.

If this is all we had to say about rational truth-avoidance, we would not have written this paper. Despite the simplicity of our model, it provides a rich frame-
work for analysis. We confirm known results and we establish a number of new ones. First, the simple fact that people care about self-esteem (or possess ‘ego-utility,’ to borrow a term from Köszegi, 2006) does not, in itself, imply anything about behavior. In other words, simply ‘sticking self-esteem into the utility function’ does not necessarily place restrictions on behavior. Further, we confirm that ‘information-aversion’ is also necessary to generate truth-avoidance. That is, ‘good news’ that would lead one to revise upward one’s estimate of one’s ability must be valued less than ‘bad news’ that would lead to an equivalent downward revision (strict concavity of the self-esteem utility function). We also establish a new and potentially interesting result; namely, that even ego-utility and information-aversion are not sufficient to generate rational truth avoidance (although, both constitute necessary conditions). Avoiding the truth further requires that an individual lacks ‘confidence’ in the accuracy of his own self-assessment. In addition, we establish that truth-avoidance requires that an individual perceive that future opportunities are driven at least partly by skill (relative to luck). That is, if opportunities are perceived to be driven entirely by luck, then gathering information is useless (so that self-esteem is preserved when the dominant action is chosen).

We go on to characterize the nature of individuals who are likely to display a propensity for truth-avoidance. We find that, ceteris paribus, high-income/wealth individuals are more likely to avoid the truth and that individuals with high self-esteem are less likely to avoid the truth. In other words, truth-avoiders tend to be those with incomes that are high relative to the self-assessment of their own ability. To the extent that income and self-esteem are not perfectly correlated within a population, the phenomenon of truth-avoidance is therefore likely to present among all sorts of individuals. We also show that the propensity for truth avoidance is decreasing in an individual’s ‘confidence’ in the accuracy of self-assessment and the extent to which the individual perceives future opportunities to be driven by luck. These are all potentially testable implications, given the type of data that is commonly produced by questionnaires and experiments conducted by psychologists.

These results may be of interest to both economists and social psychologists. For the economist, our findings suggest that the traditional practice of ignoring psychological factors like self-esteem may be justified in some circumstances but not others. These circumstances include environments where individuals are likely to be sufficiently confident in the accuracy of their self-assessment (which is not the same thing as saying that they are necessarily accurate in their self-assessment); or when they do not display ‘information aversion.’ For the psychologist, our findings identify various individual characteristics that are likely to render individuals more or less prone to avoiding the truth. Among other things, the theory developed here may be useful in guiding experimental design.

Our paper fits within a growing body of theoretical work designed to explain what, on the surface at least, appears to be ‘anomalous’ economic behavior. One
strand of this literature simply assumes that individuals are prone to making cognitive mistakes; e.g., see Rabin and Schrag (1999); and Gervais and Odean (1999). Another strand of the literature, exemplified by the recent work of Benabou and Tirole (2002a, 2002b), models the manipulation of self-image as a strategic game played among time-dated personalities.

Our own approach is most closely related to Köszegi (2001, 2006) and Weinberg (2004) who, like ourselves, model self-esteem as ego-utility. Our paper differs from these primarily in focus and the particular questions addressed. Köszegi (2006) and Weinberg (2004) are primarily concerned with explaining how people may rationally become overconfident (something that we do not address). Köszegi (2001), on the other hand, explains why it may be rational for people to avoid reviewing new information concerning past decisions, and why it may be rational to procrastinate in making decisions when there is no pecuniary gain from doing so. We view our paper as complementary to this literature, as it simplifies along some dimensions, but delves deeper along others.

2 Basic Model

Consider an economy with people who have preferences defined over lotteries of consumption $c \in \mathbb{R}$. These preferences are represented by an expected utility function $E[u(c)]$, where E denotes an expectations operator and $u'' < 0 < u'$. Each person has an initial endowment $(w, z) \in \mathbb{R}_+^2$, which is distributed in some arbitrary manner across the population. The parameter w represents the return associated with some economic opportunity (the quality of a job, investment, or mate, etc.), while z represents non-labor income.

Each individual may take one of two actions, which we denote $I \in \{0, 1\}$. The action $I = 0$ corresponds to consuming one’s initial endowment, so that $c = w + z$. The action $I = 1$ corresponds to an act that may potentially improve one’s circumstance. We model this potential improvement as a new opportunity, whose value w' is determined by the random process:

$$w' = a + e, \tag{1}$$

where a represents an endowed ‘ability’ and e represents ‘luck.’ Assume that ability is distributed across the population in a Gaussian manner. Furthermore, assume that each individual faces an i.i.d. $e \sim N(0, \sigma^2)$.

Assume that the action $I = 1$ entails no pecuniary cost. Assume further that one always retains the option of discarding the new opportunity w' in favor of the old w, so that $c = \max\{w + z, w' + z\}$. One interpretation of this model is that $I = 1$ represents a job-search activity (with perfect recall), with a wage offer that depends in part on skill and in part on match-quality. The choice

\footnote{Implicitly then, we allow for negative consumption. However, one could guarantee positive consumption by assuming instead that $c = \exp(w) + z$. As nothing in our analysis hinges on this matter, we allow for negative consumption only to simplify notation.}
$I = 0$ would in this case represent declining the search option. In the language of social psychology, we want to think of $I = 0$ as corresponding to ‘situation-avoidance.’ Given that there is absolutely no cost to ‘facing the situation,’ the only rational choice here would be $I = 1$.

2.1 Information and Beliefs

In general, an individual may not know with certainty his or her own true ability level a. In this case, we assume that individuals are Bayesian. In the present context, since (a, e) are distributed joint-normally, Bayes’ rule corresponds to the Kalman filter.\(^2\)

That is, imagine that each person begins with a prior (b, Σ), so that one’s ability is perceived to be distributed normally with mean b and variance $\Sigma = E[a - b]^2$. Since b represents a person’s self-assessment of his own ability, we refer to b as ‘self-esteem.’ Note that Σ is a parameter that describes an individual’s ‘confidence’ in his self-assessment. In particular, Σ^{-1} is referred to as the precision of the estimate (b), so that $\Sigma^{-1} = \infty$ represents the case of an individual who is supremely confident in his self-assessment (which is not to say that the self-assessment is necessarily correct).

Now, conditional on $I = 1$, an individual generates a new opportunity $w' = a + e$. Not knowing one’s true ability, however, implies that an individual faces a signal-extraction problem. Given b and the new information associated with w', an individual will update his self-assessment $b' = E[a \mid b, w']$ according to:

\begin{equation}
 b' = (1 - k)b + kw'
\end{equation}

where

\begin{equation}
 k = \frac{\Sigma}{\Sigma + \sigma^2}.
\end{equation}

In addition, the perceived precision of one’s self-assessment evolves according to:

\begin{equation}
 \Sigma' = \frac{\sigma^2}{\Sigma + \sigma^2}\Sigma.
\end{equation}

Of course, in the case of $I = 0$ (truth-avoidance), no new information is gathered so that:

\begin{align*}
 b' &= b; \\
 \Sigma' &= \Sigma.
\end{align*}

Thus, (2) asserts that b' is given by a convex combination of one’s prior b and new information w' (in the case for which $I = 1$). The Kalman-gain variable k determines how much weight is to be placed on these latter two objects. For

a given Σ, we see from (3) that k is decreasing in the ‘noise’ term σ. That is, if the value of a new opportunity is determined primarily by luck rather than ability (i.e., a large σ), then any optimal reassessment of ability should largely ignore new information and rely more heavily on prior beliefs.

As well, note that for a given σ, (3) also reveals that k is a decreasing function of Σ⁻¹. Recall that Σ⁻¹ measures the (perceived) precision of one’s current estimate of ability. As Σ → 0, one becomes increasingly ‘confident’ in one’s self-assessment, so that k → 0 (it is optimal to ignore noisy information and rely more heavily on prior beliefs). Equation (4) describes how the precision of one’s self-assessment evolves.3

Modifying the information structure in this manner affects how individuals form expectations, but otherwise does not affect behavior (it still remains optimal to choose I = 1, regardless of one’s initial condition as summarized by the triplet (w, b, Σ). To show this formally, let F(w′, b) denote the cumulative distribution function for w′ conditional on b. Then the expected utility payoff associated with I = 1 is given by:

\[E \max \{u(w + z), u(w′ + z)\} = \int_w u(w′ + z)F(dw′, b) + F(w, b)u(w + z). \]

This obviously dominates the utility payoff associated with avoiding the situation; i.e. \(E \max \{u(w + z), u(w′ + z)\} \geq u(w + z) \).4

3 A Model of Self-Esteem

In the model above, individuals are endowed with some prior b that measures their self-assessment of their own (unobserved) ability. Individuals are also endowed with a prior view Σ that measures the perceived precision of their self-assessment. In the basic model outlined above, neither of these objects play a role in determining behavior. Such a view is contrary to social psychology, where the conventional wisdom is that we can not understand individual behavior without first having an understanding of self-esteem; i.e., see, Leary and Tangney (2003).

We model the psychologist’s view here by extending the commodity space to include lotteries over the posterior belief b′, so that preferences can be represented by an expected utility function:

\[E[u(c) + \lambda v(b')] . \]

The parameter \(\lambda \geq 0 \) in (6) simply indexes the degree to which a person cares about his self-image. The model presented earlier is just the special case in

3 Extending this model to an infinite horizon, equation (4) implies that infinitely-lived individuals could potentially learn their true ability (i.e., \(\Sigma t \rightarrow 0 \) as \(t \rightarrow \infty \)).

4 As one of our referee’s has pointed out, it is crucial here that \(I = 0 \) does not depend on ability, while the return to option \(I = 1 \) does.
which $\lambda = 0$. Following Köszegi (2001), we assume that v is strictly increasing and weakly concave. Strict concavity of v implies that the person displays a form of ‘information aversion.’ That is, good news that would lead one to revise upward one’s estimate of one’s ability is valued less than bad news that would lead to an equivalent downward revision. Because we do not want our results to hinge on hard-to-interpret third-derivative properties of v, we assume for simplicity that v takes a quadratic form; i.e.,

$$v(b) = \alpha b - 0.5\beta b^2;$$

where $\alpha, \beta \geq 0$ are parameters.5

3.1 Optimal Decision-Making

Consider an individual described by the list of parameters $(w, b, \Sigma, \lambda, \alpha, \beta, \sigma)$ describing preferences, technology, and information. This person must make a choice $I \in \{0, 1\}$ to maximize (6) subject to $c = \max\{w' + z, w + z\}$ and subject to the rational updating of beliefs (2)-(5).

The utility payoff associated with $I = 0$ is given by:

$$V_0(w, z, b) = u(w + z) + \lambda v(b). \quad (8)$$

The expected utility payoff associated with $I = 1$ is given by:

$$V_1(w, z, b) = E \max\{u(w' + z) + \lambda v(b'), u(w + z) + \lambda v(b')\}; \quad (9)$$

$$= \int \max\{u(w' + z), u(w + z)\} F(dw', b) + \lambda \int v(b')F(dw', b);$$

$$= \int u(w' + z)F(dw', b) + u(w + z) F(w, b) + \lambda \int v(b')F(dw', b);$$

where b' satisfies (2).

Observe that, while $I = 0$ removes the attractive option of potentially upgrading the value of one’s opportunity, it has the benefit of preserving one’s self-image (since no information is gathered that would necessarily lead one to update one’s belief). For obvious reasons, we label such an action truth-avoidance. Conversely, while $I = 1$ represents an expected pecuniary gain; such an action exposes a person to ‘self-image risk.’ To the extent that an individual cares about self-image, the economically rational (i.e., utility maximizing) choice is no longer obvious; i.e., depending on parameters, it is possible that $V_1(w, z, b) \gtrless V_0(w, z, b)$.

Define the following two terms:

$$\Pi(w, z, b) \equiv \int_w u(w' + z)F(dw', b) + u(w + z)F(w, b) - u(w + z); \quad (10)$$

$$\Delta(b) \equiv \lambda \left[v(b) - \int v(b')F(dw', b)\right]. \quad (11)$$

5We will also restrict attention to cases where $b < \alpha/\beta$, so that $v'(b) > 0$ always.
Here, Π represents the net ‘pecuniary’ gain from gathering information and Δ represents the net ‘non-pecuniary’ benefit associated with preserving one’s self-image. Note that $V_1(w, z, b) - V_0(w, z, b) \equiv \Pi(w, z, b) - \Delta(b)$.

Observe that the net pecuniary gain from gathering information is monotonically decreasing in w; i.e.,

$$\frac{\partial \Pi}{\partial w} = u'(w + z) [F(w, b) - 1] < 0. \quad (12)$$

Intuitively, the closer one is to the top of the wage distribution, the less likely one is to draw a new opportunity that dominates the one in hand. Note that this result is independent of the curvature properties of u; i.e., it continues to hold when $u'' = 0$ (or $u' = \kappa > 0$ constant). For a given Δ then, one can characterize a reservation wage w_R satisfying:

$$\Pi(w_R, z, b) = \Delta(b). \quad (13)$$

The optimal strategy may therefore be expressed as:

$$I^* = \begin{cases}
0 & \text{if } w_R(z, b) < w \leq \infty; \\
1 & \text{otherwise.}
\end{cases} \quad (14)$$

Notice that if $\Delta(b) \equiv 0$ as in the conventional model studied earlier, then $w_R = \infty$. In other words, it strictly pays to ‘face the situation’ for anyone with an endowed opportunity w below the upper bound of the wage distribution when self-esteem is not a factor in the decision-making process. Of course, if $\Delta > 0$ is a possibility, then $w_R < \infty$ so that, in general, there will be circumstances in which truth-avoidance constitutes a rational choice. These circumstances are now described below.

Lemma 1: For $v(b)$ satisfying (7), $\Delta = 0.5\lambda\beta\Sigma^2(\sigma^2 + \Sigma)^{-1} \geq 0$.

The proof of this lemma is provided in Appendix 1. Notice that Δ here does not depend on the level of an individual’s self-esteem level b. Unfortunately, this result is not a general one, as it depends on the quadratic nature of v. Nevertheless, the closed-form solution acquired by the quadratic restriction is revealing, as it demonstrates clearly how Δ depends on parameters: λ, β, σ and Σ. It follows as a corollary to Lemma 1 that:

Proposition 1: $\Delta = 0.5\lambda\beta\Sigma^2(\sigma^2 + \Sigma)^{-1} > 0$ if and only if $\lambda > 0, \beta > 0, \Sigma > 0,$ and $\sigma^2 < \infty$.

Proposition 1 tells us that rational truth-avoidance is only possible if the following conditions hold simultaneously: (1) $\lambda > 0$ (people value self-esteem); (2) $\beta > 0$ (people are information-averse); (3) $\Sigma > 0$ (people are less than fully
confident in the accuracy of their self-assessment); and (4) \(\sigma^2 < \infty \) (new wage offers carry some information, or \(k > 0 \) if you prefer).

The necessary conditions for truth-avoidance \(\lambda > 0, \beta > 0 \) are by now well-known in the literature. A contribution of our analysis is to demonstrate that while these conditions may be necessary, they are not sufficient. In the context of our model, an additional requirement is that the individual is less than fully confident in the accuracy of their self-assessment. To put things another way, a person who is fully confident in their self-assessment can in no way be influenced by new information to reassess his perceived ability. An ‘unlucky’ wage draw will in this case necessarily be attributed to bad luck and not to any personal shortcomings; i.e., there can be no self-esteem risk.

4 Characteristics of Truth-Avoiders

In this section, we attempt to flesh out some of the characteristics of truth-avoiders. Our approach here is to consider a population of individuals that are identical in every respect except along one particular dimension in the parameter vector \((w, z, b, \Sigma, \lambda, \alpha, \beta, \sigma)\). Of course, the analysis that follows assumes that \(\Delta > 0 \).

4.1 Value of Endowments

Imagine a population of individuals who differ only in terms of the value of their current economic opportunity \(w \). It follows directly from the optimal strategy described by (14) that:

Proposition 2: *(Ceteris paribus) Truth-avoiders will be concentrated among those who are currently endowed with relatively good economic opportunities.*

At first, this result may sound surprising; but in fact, the intuition is simple and follows directly from the fact that \(\Pi \) is monotonically decreasing in \(w \). In particular, note that while there is no pecuniary cost to gathering information, the upside from doing so is relatively small for those already close to the top. Likewise, for those near the bottom, the upside potential is relatively large. Thus, for a given \((b, \Delta)\), the former group has a stronger incentive to avoid the truth. Note that this result does not hinge on the curvature properties of \(u \) (in particular, the result continues to hold even in the case \(u'' = 0 \)).

Let us now imagine a population of individuals who differ solely in terms of their endowed ‘wealth’ as measured by \(z \) (non-labor income).\(^6\) The relevant

\(^6\)We thank a referee for suggesting this exercise.
comparative static here is obtained from (13):

\[
\frac{dw_R}{dz} = -\frac{\partial \Pi/\partial z}{\partial \Pi/\partial w},
\]

where,

\[
\frac{\partial \Pi}{\partial z} = \int_w u'(w' + z) F(dw', b) - u'(w + z) [1 - F(w, b)].
\]

The fact that \(\partial \Pi/\partial w < 0 \) has been established in (12). The first thing we can establish is that if individuals are risk-neutral in the sense that \(u'' = 0 \) (or \(u' = \kappa > 0 \) a constant), then

\[
\frac{\partial \Pi}{\partial z} = \kappa [1 - F(w, b)] - \kappa [1 - F(w, b)] = 0.
\]

In other words, the propensity for truth-avoidance is unrelated to wealth when individuals are risk-neutral. Let us now suppose \(u'' < 0 \) and define \(\kappa \equiv u'(w + z) > 0 \). It then follows that

\[
\int_w u'(w' + z) F(dw', b) < \kappa [1 - F(w, b)]
\]

so that \(\partial \Pi/\partial z < 0 \), which implies \(dw_R/dz < 0 \). One can therefore establish that:

Proposition 3: (Ceteris paribus) If \(u'' < 0 \), truth-avoiders will be concentrated among the rich.

The intuition for this result is also rather straightforward. Given the concavity of \(u \), higher levels of wealth imply that the marginal utility associated with searching for better options is lower. In other words, there is a sense in which the wealthy can better afford to take actions (or inactions) that protect their self-image.

4.2 The Level of Self-Esteem

Imagine now a population that differ only in their prior self-assessment \(b \). The relevant comparative static is again obtained from (13):

\[
\frac{dw_R}{db} = -\frac{\partial \Pi/\partial b}{\partial \Pi/\partial w}.
\]

The fact that \(\partial \Pi/\partial w < 0 \) has been established in (12). As \(F(w, b) \) denotes the distribution of wage opportunities conditional on a (perceived) mean \(b \), one would expect that the net pecuniary gain to gathering information is increasing in \(b \); i.e., that \(\partial \Pi/\partial b > 0 \). One can establish this formally by noting that
\(F(w, b_l) > F(w, b_h)\) for \(b_l < b_h\) (i.e., the former conditional distribution stochastically dominates the latter). It follows then that \(\Pi(w, z, b_h) > \Pi(w, z, b_l)\); with \(\partial\Pi/\partial b > 0\) then emerging as one takes \(b_h \rightarrow b_l\). As a consequence, it follows that \(dw_R/\partial b > 0\).

In other words, a higher level of self-esteem increases one’s reservation opportunity level, thereby reducing the range of values of \(w\) for which it makes sense to engage in truth-avoidance. Someone with high self-esteem finds it more costly to engage in truth-avoidance simply because he expects a better outcome by accepting the signal. From this result, we have the following proposition:

Proposition 4: (Ceteris paribus) Truth avoiders will consist of those who are currently endowed with relatively low self-esteem.

Taken together, Propositions 2 and 4 suggest that the phenomenon of truth-avoidance is likely to be concentrated among those individuals who are in some sense ‘doing well’ relative to their self-assessment of ability (i.e., a high \(w/b\) ratio). Thus, our theory suggests that the phenomenon of truth-avoidance is likely to be found among individuals throughout the income distribution. What matters in our model is not the level of income or self-esteem; but rather; their relative magnitudes. This is potentially a testable implication.

4.3 Preferences

Proposition 5: The propensity to avoid the truth is increasing in \(\lambda\) and \(\beta\).

This non-surprising result follows directly from (14). It is worth repeating that while psychologists appear to emphasize the parameter \(\lambda\), the theory here suggests that some degree of ‘information-aversion’ is required as well. There are experiments which attempt to measure the affective or emotional response of individuals to given self-esteem damaging events (Hoyle et. al. 1999 p. 87). The evidence is that individuals with low self-esteem have a stronger affective response to a given self-esteem damaging failure.

4.4 Confidence in One’s Self-Assessment

Recall that \(\Sigma^{-1}\) represents the perceived accuracy of one’s self-assessment. From Lemma 1, it is easy to verify that \(\Delta\) is an increasing function of \(\Sigma\) (i.e., a decreasing function of \(\Sigma^{-1}\)); this operates through the effect that \(\Sigma\) has on \(k\) in (3). In words, what this means is that among otherwise similar people, those who are confident in the accuracy of their self-assessment are less likely to engage in truth-avoidance.
Proposition 6: The propensity to avoid the truth is decreasing in the perceived accuracy of one’s self-assessment.

Proposition 6 suggests that the following is possible. Consider two people \(i = 1, 2 \), who are identical in every way except for differences in \((b_i, \Sigma_i)\). Suppose that \(b_1 > b_2 \) and \(\Sigma_1 > \Sigma_2 = 0 \). That is, while the type 1 person has relatively high self-esteem, this high self-assessment is associated with a degree of uncertainty. The type 2 person, on the other hand, is absolutely confident in his/her self-assessment. Our theory asserts that the low-esteem type 2 person will not practice truth-avoidance; while the high-esteem type 1 person may.

4.5 Noisiness of Information

Proposition 7: The propensity to avoid the truth decreases with the noisiness of the new signal \(\sigma^2 \).

\[
\frac{dw_R}{d\sigma^2} = \frac{\partial \Delta / \partial \sigma^2 - \partial \Pi / \partial \sigma^2}{\partial \Pi / \partial w}.
\]

Recall that \(\partial \Pi / \partial w < 0 \). Also recall that \(\sigma^2 \) measures a person’s perception of the relative role that luck plays in determining the value of future opportunities. From \(\Delta \) in Lemma 1, we have \(\partial \Delta / \partial \sigma^2 < 0 \). The intuition is that the greater the perceived role of luck (noisy signals) the less costly will it be to expose oneself to information-gathering activities that may damage self-esteem. From (10) the effect of \(\sigma \) on \(\Pi \) simply reinforces the effect on \(\Delta \) or \(\partial \Pi / \partial \sigma^2 > 0 \). The intuition for this is simple. Observe that an increase in \(\sigma \) represents a mean-preserving spread of the (normal) distribution \(F \). Since individuals have complete recall, a mean-preserving spread in \(F \) serves to increase the upside potential of gathering information, without altering the downside risk. Thus, \(dw_R / d\sigma^2 > 0 \) and an increase in \(\sigma^2 \) leads to a decline in the propensity to avoid the truth.

Propositions 6 and 7 are interesting because they suggest that increases in “uncertainty” along different dimensions can have different effects on the propensity for truth-avoidance. That is, increased uncertainty about how past events have influenced the accuracy of one’s current self-assessment (an increase in \(\Sigma \)) serve to increase truth-avoidance. In contrast, increased uncertainty about the value of future opportunities serves to decrease truth-avoidance.

5 Conclusion and Extensions

An implication of our simple model is that it identifies several different forces that need to be in operation simultaneously if avoiding the truth is likely to manifest itself as observed behavior. For rational truth-avoidance to arise, people obviously have to care about self-esteem— but in a particular way (they must
be averse to image-risk). Further, individuals must be less than fully confident in the accuracy of their self-assessment and, on top of this, individuals must believe that luck plays only some role in determining their opportunities. Our analysis further suggests that the phenomenon of truth-avoidance is likely to be concentrated among those individuals who are in some sense ‘doing well’ relative to their self-assessment of ability. We also show that the propensity for truth avoidance is decreasing in an individual’s ‘confidence’ in the accuracy of self-assessment and the extent to which the individual perceives future opportunities to be driven by luck. These are all dimensions that are potentially measurable with well-designed experiments or other methods. The main point of our paper for psychologists is that theory can be developed to guide the measurement process.

For the economist, many types of economic behavior probably remain plausibly interpretable within the context of theories that abstract from self-esteem issues. But there may be some (perhaps even a great number of) phenomena for which self-esteem issues may play a prominent role. One important example may concern the question of the optimal design of social insurance mechanisms. Casual empiricism suggests that when a member of society ‘hits bottom’ (job loss, divorce, poverty, etc.), low self-esteem becomes an issue. It becomes an issue because of the possibility that low self-esteem can be self-perpetuating (e.g. by abstaining from job-search when the costs of doing so are low). In the context of the theory developed above (extended to many periods), it is possible for a string of unlucky events to drive one’s self-assessment far below one’s true ability, ultimately culminating in a state of perpetual truth-avoidance. How should policy be designed to deal with such a scenario? We believe that this is a promising area of future research.

Our model was built to study the phenomena of avoiding the situation described in the psychology literature. Our approach can be easily extended to study other self-esteem maintenance strategies. Self-handicapping, is a widely discussed and experimentally observed phenomena (see Hoyle et. al. (1999) chapter 6 for references). In describing self-handicapping Shepperd and Arkin (1989) argue, individuals “... attempt to reduce a threat to esteem by actively seeking or creating inhibitory conditions that interfere with performance and, thus, provide a persuasive causal explanation for potential failure.” See Berglas and Jones (1978) for early experiments on self-handicapping with performance inhibiting and enhancing drugs. Imagine an individual intentionally taking an action (e.g. drinking the night before a job interview) which damages their ability at the interview, lowers a, generating a less informative signal, higher σ, which results in less updating, lower k, with the goal of protecting self-esteem. It would be straightforward to model this as a technology which generates the lower a and higher σ from the handicapping action. Our conjecture is the incentive to face the situation, face the situation with handicapping, or avoid the situation could be directly connected to initial wealth, initial self-esteem, and the preference and information environment parameters.
We also view the model as a potentially useful way to begin organizing one’s thinking over how self-esteem factors into decision-making. Consider, for example, the relationship between avoiding the situation and self-handicapping using our model. Avoiding the situation can be interpreted as a special case of the more general phenomena of self-handicapping. In avoiding the situation, the individual takes an action (avoids the situation) which damages their ability so much so that \(w > w' \) in exchange for an uninformative signal, \(\sigma \to \infty \), which results in no updating, \(k \to 0 \), with self-esteem fully protected.
6 References

Appendix 1

Proof of Lemma 1:

\[\Delta \equiv \lambda \{ v(b) - E[v(b') \mid b, \Sigma] \}, \]

where \(E[\bullet \mid b, \Sigma] \) denotes the expectation conditional on \(b \) and \(\Sigma \). Using the quadratic form for \(v \), we have:

\[v(b) = \alpha b - (1/2)\beta b^2; \]
\[v(b') = \alpha b' - (1/2)\beta(b')^2; \]

Observe that:

\[E[v(b') \mid b, \Sigma] = \alpha E[b' \mid b, \Sigma] - (1/2)\beta E[(b')^2 \mid b, \Sigma]; \]

as \(E[b' \mid b, \Sigma] = (1 - k)b + kE[w' \mid b, \Sigma] = b \). Combining what we have so far:

\[\Delta = \lambda (1/2)\beta \{ E[(b')^2 \mid b, \Sigma] - b^2 \} . \]

We can now expand the term \(E[(b')^2 \mid b, \Sigma] \); i.e.,

\[E[(b')^2 \mid b, \Sigma] = E[(kw' + (1 - k)b)^2 \mid b, \Sigma]; \]
\[= E[k^2(w')^2 + 2k(1 - k)bw' + (1 - k)^2b^2 \mid b, \Sigma]; \]
\[= k^2E[(w')^2 \mid b, \Sigma] + 2k(1 - k)bE[w' \mid b, \Sigma] + (1 - k)^2b^2; \]
\[= k^2E[(w')^2 \mid b, \Sigma] + (1 - k^2)b^2. \]

We still need to expand the term \(E[(w')^2 \mid b, \Sigma] \); i.e.,

\[E[(w')^2 \mid b, \Sigma] = E[(a + e')^2 \mid b, \Sigma]; \]
\[= E[a^2 \mid b, \Sigma] + 2E[ae' \mid b, \Sigma] + \sigma^2; \]

Given that \(a \) and \(e' \) are independent, we know that \(E[ae' \mid b, \Sigma] = 0 \). Moreover, we also know that \(E[a^2 \mid b, \Sigma] = \Sigma + b^2 \). Consequently, we get that

\[E[(w')^2 \mid b, \Sigma] = b^2 + \Sigma + \sigma^2. \]

Thus, we are left with:

\[\Delta = \lambda (1/2)\beta \left[(1 - k^2)b^2 + k^2b^2k^2(\sigma^2 + \Sigma) - b^2 \right]; \]
\[= \lambda (1/2)\beta \frac{\Sigma^2}{\sigma^2 + \Sigma} . \]