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Maeda RS, O’Connor SM, Donelan JM, Marigold DS. Foot
placement relies on state estimation during visually guided walking. J
Neurophysiol 117: 480—491, 2017. First published October 19, 2016;
doi:10.1152/jn.00015.2016.—As we walk, we must accurately place
our feet to stabilize our motion and to navigate our environment. We
must also achieve this accuracy despite imperfect sensory feedback
and unexpected disturbances. In this study we tested whether the
nervous system uses state estimation to beneficially combine sensory
feedback with forward model predictions to compensate for these
challenges. Specifically, subjects wore prism lenses during a visually
guided walking task, and we used trial-by-trial variation in prism
lenses to add uncertainty to visual feedback and induce a reweighting
of this input. To expose altered weighting, we added a consistent
prism shift that required subjects to adapt their estimate of the
visuomotor mapping relationship between a perceived target location
and the motor command necessary to step to that position. With added
prism noise, subjects responded to the consistent prism shift with
smaller initial foot placement error but took longer to adapt, compat-
ible with our mathematical model of the walking task that leverages
state estimation to compensate for noise. Much like when we perform
voluntary and discrete movements with our arms, it appears our
nervous systems uses state estimation during walking to accurately
reach our foot to the ground.

NEW & NOTEWORTHY Accurate foot placement is essential for
safe walking. We used computational models and human walking
experiments to test how our nervous system achieves this accuracy.
We find that our control of foot placement beneficially combines
sensory feedback with internal forward model predictions to accu-
rately estimate the body’s state. Our results match recent computa-
tional neuroscience findings for reaching movements, suggesting that
state estimation is a general mechanism of human motor control.

locomotion; internal model; uncertainty; adaptation; vision

WALKING REQUIRES ACCURATE foot placement to balance an
otherwise unstable inverted pendulum-like motion (Bauby and
Kuo 2000) and to accommodate changes in terrain and the
environment. Consider the situation of avoiding an icy patch or
a hole in a sidewalk, and thus the need to direct your foot to a
specific location. This involves identifying the hazard and a
safe step location, and knowledge of body/limb position. The
nervous system heavily relies on vision to make these mea-
surements. For instance, individuals use visual feedback to
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make rapid stepping corrections, as evident when a ground
target shifts to a new location (Reynolds and Day 2005) or
when avoiding a sudden ground obstacle (Marigold et al.
2007). Furthermore, occluding vision of a target during the step
prior reduces accuracy and increases variability of foot place-
ment (Matthis et al. 2015).

However, visual feedback does not provide a true measure
of limb state and the properties of the environment in which we
navigate. Limited spatial resolution of sensory receptors, de-
lays in sensory processing, and physiological noise inherent in
neural transduction create uncertainty in sensory input (Faisal
et al. 2008; Franklin and Wolpert 2011). How then, do we
perform movements so effectively and adapt to changes in the
properties of our body (e.g., reduced visual acuity with age or
disease) and our surrounding environment despite this sensory
noise?

Rather than relying entirely on imperfect sensory feedback,
more accurate estimates of body and environmental states may
be achieved by using a forward model to first predict these
states and the associated sensory output. The mismatch be-
tween predicted and actual sensory feedback, termed sensory
prediction error, adjusts the predicted states in a process called
state estimation (Shadmehr and Mussa-Ivaldi 2012). However,
forward prediction also suffers from uncertainty, termed pro-
cess noise, because it is based on imperfect body representa-
tions and perturbation expectations. The relative levels of
sensory and process noise determine the optimal combination
between sensory feedback and forward prediction; the contri-
bution of the latter grows with increases in sensory noise.

Although walking is rarely studied in this context, there is
considerable evidence that state estimation underlies the con-
trol of upper limb reaching movements. Studies demonstrate,
for example, that sensory prediction error drives adaptation to
an imposed visuomotor rotation or displaced visual feedback of
a hand-controlled cursor (Mazzoni and Krakauer 2006; Tseng
et al. 2007; Wei and Kording 2010). This adaptation, which
stems from a reweighting of visual feedback, depends on the
prior history of errors and the certainty of information received
and generated by the brain (Burge et al. 2008; Wei and
Kording 2010). Given that visually guiding the foot to specific
ground locations and reaching the hand to a target share similar
motor planning features, these actions may be controlled sim-
ilarly, as well. However, locomotion is often studied from the
perspective that pattern-generating, reflexive, and balancing
circuits located in the spinal cord and brain stem dominate its
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control (Duysens and van de Crommert 1998; Grillner et al.
2008; Pearson 2008). In this study, we determined whether foot
placement control during walking also leverages state estima-
tion. To test this hypothesis, subjects performed a visually
guided walking task that required precise foot placement to a
target while wearing prism lenses. The lenses altered the
mapping relationship between the perceived target location and
the motor command necessary to direct the foot to that posi-
tion. We varied the magnitude and direction of prism shifts on
a trial-to-trial basis to add noise to the visual feedback and
induce a reweighting of this input. A state estimation-based
controller suggests that subjects would rely more on a
forward model prediction to best estimate target position
with increased measurement uncertainty. To expose altered
weighting of visual feedback after noise familiarization, we
added a consistent prism shift requiring subjects to adapt their
mapping estimate to reduce foot placement errors.

We contrasted the state estimation controller with another
commonly used adaptation controller driven by task error
(Haith and Krakauer 2013). In the former controller, subjects
step toward the estimated target location, which is updated by
weighted sensory prediction errors. In the latter controller,
subjects step toward the sensed target location adjusted by a
correction term, which is updated by weighted sensed foot
placement (or task) error. Both controllers predict that re-
weighting should result in a slower error correction in response
to the consistent prism shift for higher noise conditions. How-
ever, the state estimation controller uniquely predicts that
reweighting results in smaller initial foot placement errors and
a tendency for error to increase before decreasing following the
consistent prism shift.

MATERIALS AND METHODS

Subjects. Twenty-four subjects (age 21.8 = 2.8 yr; 15 men, 9
women; 21 of 24 right-leg dominant, as defined by the leg used to kick
a soccer ball) with no known musculoskeletal, neurological, or visual
disease participated in this study. Six subjects wore corrective lenses
(glasses or contacts) during the experiments. The Office of Research
Ethics at Simon Fraser University approved all experimental proce-
dures, and all subjects gave informed written consent before
participating.

Experimental task. Subjects performed a modified visually guided,
precision walking task (Alexander et al. 2011, 2013) characterized by
having to walk across a 6-m path and step with the right foot onto the
medial-lateral center of one target (36 X 3 cm) without stopping (Fig.
1A). An LCD projector (Epson EX7200) displayed the green target on
the ground. Because we were interested in medial-lateral foot place-
ment error, we used a long target length to reduce the accuracy
demand in the anterior-posterior direction, which also prevented
subjects from needing to shuffle their steps as they approached the
target area. To diminish the effect of environmental references and
increase target visibility, subjects walked under reduced light (~0.7
lux, as measured with a calibrated digital light meter; model DML-
2200, Circuit Test Electronics, Burnaby, BC, Canada). An Optotrak
Certus motion capture camera (Northern Digital, Waterloo, ON,
Canada), positioned perpendicular to the walking path, recorded
infrared-emitting diodes placed on the chest and bilaterally on each
midfoot over the lateral cuneiforms at a sampling frequency of 100
Hz. A Panasonic high-definition camcorder (model HDC-SD60) also
was used to record videos of each walking trial.

Subjects wore goggles housing wedge prism lenses that shifted the
visual perception of the target either left or right with respect to its
actual location (see Fig. 1B) or flat lenses that did not shift perceived

target position. The type of lenses depended on the trial and phase of
the protocol. The goggles blocked peripheral vision, forcing subjects
to look only through the lenses. Visually guided movements re-
quire that the brain maintain an accurate mapping between the per-
ceived target location and the motor command necessary to direct the
limb to that position. Prism lenses disrupt the normal visuomotor
mapping. This induces movement errors after walking and stepping to
the perceived location of the target, thereby requiring subjects to adapt
(Alexander et al. 2011, 2013). By setting a new mean prism shift
during a block of trials while randomly changing prism lenses around
this constant mean on a trial-by-trial basis (prism noise), we studied
how subjects adapted when faced with different amounts of measure-
ment uncertainty. We based these prism noise perturbations on the
third experiment of Burge et al. (2008), which used trial-by-trial
visual perturbations to induce measurement errors. Although it is
unknown whether subjects interpret the prism noise as visual (sen-
sory) noise or a randomly changing internal state, either interpretation
allows testing of the state estimation hypothesis. A state estimation
controller would rely more on a forward model prediction with
increased prism noise, because prism noise reduces the certainty with
which the controller can estimate the mean prism shift from measured
errors. Therefore, this type of perturbation shares a common charac-
teristic with other experiments that use blur to degrade visual infor-
mation: there is little to no benefit to adapt, based on measurement
error. However, unlike blur, the statistics of the noise can only be
observed over many trials.

Subjects started each trial at random anterior-posterior locations
within a 1.8- to 3-m distance from the target. This helped to avoid
subjects learning a specific stepping sequence and ensured the task
remained under visual guidance. To begin a trial, subjects opened
their eyes and immediately started walking. We instructed subjects to
walk at a quick and constant pace during the task (as if late for class).
Although locomotion is a continuous process that relies on real-time
sensory information, these guidelines minimized online corrections of
the leg/foot trajectory to more closely match previous reaching ex-
periments, in which the movements are ballistic and emphasize use of
sensory feedback prior to the movement. Recent work in precision
walking also demonstrates that visual feedback is used before, but not
during, a step to a target (Matthis et al. 2015). Subjects walked with
an average speed (+=SD) of 1.9 £ 0.3 m/s, and we verified the
presence of smooth foot marker velocity profiles and absence of
sudden changes in foot marker trajectory during steps to the target to
confirm the lack of online corrections. Our instructions also empha-
sized that the goal of the task was to step onto the center of the
medial-lateral location of the target, to look down to see foot contact
on the target, and to not stop until taking at least one step after the
target. Subjects kept their eyes closed before each trial and again when
walking back (under experimenter guidance) to the start position to
avoid additional adaptation between trials. To ensure that subjects
performed the task correctly, we provided them with familiarization
trials (n ~ 5) that preceded the actual experiment. Subjects wore flat
lenses (0 diopters) in the goggles during these trials.

Experimental protocol. Each protocol consisted of 50 baseline, 60
adaptation, and 5 postadaptation trials. The mean prism shift in these
phases was 0 diopters (0°), 18 diopters (~10.3°), and O diopters (0°),
respectively. We used different ranges of trial-by-trial prism shifts to
create three distinct levels of measurement uncertainty (referred to as
noise) during the baseline and adaptation phases: no noise, low noise,
and high noise (Fig. 1C). The no-noise condition consisted of constant
O-diopter lenses in the baseline phase and constant 18-diopter lenses
in the adaptation phase. In the low-noise condition, we used a range
of =6 diopters (in 2-diopter increments) around the mean prism shift
of the baseline (SD = 3.03 diopters) and adaptation (SD = 3.16
diopters) phases. The high-noise condition consisted of lenses with a
range of *12 diopters (in 2-diopter increments) around the mean
prism shift of the baseline (SD = 5.66 diopters) and adaptation (SD =
5.84 diopters) phases. After each adaptation phase, we included five
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Fig. 1. Experimental setup and design. A: schematic of the visually guided walking task. Subjects walked and stepped with their right foot on a thin green line
projected on the ground from above. Medial-lateral foot placement error, defined as the distance between a position marker on the foot and the center of the target
line, quantified performance (inset). B: a simulated view of the target through the prism lenses and the perceived target shift for 18-diopter lenses. C: distribution
of prism lenses in each noise condition for the baseline and adaptation phases. D: increasing noise created greater foot placement error variability during the
baseline phase, supporting the notion that our prism noise had the intended effect on performance. *P < 0.05, significant post hoc test effects. E: an example
of one of the protocols. In this case, the subject first experienced the no-noise condition with a leftward prism shift in the adaptation phase, followed by the
high-noise condition with a rightward prism shift in the adaptation phase, and then the low-noise condition with a leftward prism shift in the adaptation phase.
In each condition, 50 baseline phase trials preceded 60 adaptation phase trials and 5 postadaptation phase trials.

postadaptation trials with no prism shifts to assess the magnitude of
each adaptation. To mask the strength and direction of the prism
perturbations, an experimenter removed the prism lenses from the
goggles every trial in each condition and phase and then replaced
them, regardless of whether the subsequent trial used the same lenses.

A custom-written MATLAB (The MathWorks, Natick, MA) pro-
gram randomly generated the order and frequency of the specific
prism lenses based on a Gaussian distribution for each experimental
condition and the total number of trials per baseline and adaptation
phases. The program then reordered the sequence to reduce the
likelihood that sequential trials used similar lenses and increase the
perception of noise about the mean shift. Regardless, the prism

shift values were fixed at 0 and 18 diopters for the last baseline
phase trial and first adaptation phase trial, respectively, and the
distance to the target was fixed at 1.8 m in these trials to ensure that
the same perturbations occurred in the first adaptation trial across
all conditions.

To establish that our noise conditions created three different
levels of uncertainty, we determined the variability of foot place-
ment error in the baseline phase for each condition, defined by the
standard deviation across baseline trials. A one-way repeated-
measures ANOVA and subsequent Tukey’s post hoc test demon-
strated that, compared with the no-noise condition, variability in
foot placement error increased by 74.6% and 206% in the low- and
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high-noise conditions, respectively (Fig. 1D; F, 44 = 73.3, P <
0.0001).

To minimize the order effects and to allow for a within-subject
analysis, we used a fully counterbalanced design that accounted for
the order of noise conditions and direction of the mean prism shifts in
the adaptation phases. Specifically, we randomly assigned 2 subjects
to 1 of 12 noise order-prism direction protocols, each with a unique
noise condition order and with the direction of the mean prism shift in
the adaptation phase alternated in a rightward-leftward-rightward
sequence or leftward-rightward-leftward sequence (see Fig. 1E for
example). The alternating mean prism shift during the adaptation
phase also served to reduce the effect of learning the mean shift across
conditions (Krakauer et al. 2005). Because of time constraints and to
prevent fatigue, subjects performed two conditions separated by a
10-min rest break on the first day and performed the third condition
during a second day, with an average interval between testing sessions
of 6.3 = 3.1 days. The first and second testing session lasted ~2.5 and
1 h, respectively.

Visually guided walking model. We used a mathematical model to
simulate foot placement errors, as well as sensory feedback in re-
sponse to foot placement motor command inputs, during the visually
guided precision walking task. We then used this model to test two
competing control schemes for planning these motor commands
(described in Sensory prediction error controller and Task error
controller). The model has three system states: medial-lateral target
position relative to the starting location x,, the mean prism shift x,,
and foot placement error x;. A simulated subject measures the target
location y, through prism lenses, walks toward the target position, and
then measures foot placement error y, through the same prism lenses.
These variables represent the minimum number of actual and sensed
states necessary to represent a generic target-reaching task with visual
perturbations. We chose not to include other sources of sensory
feedback such as proprioception, since others also have excluded them
(Burge et al. 2008), because relative target location could only be
measured from visual information. The simulation is represented as a
set of difference equations (Egq. 1), which model the trial-by-trial

dynamics of the state vector X and sensory input vector y, where X =
[x, X, x;3]" and 3 = [y, y,]1".
¥k)=A-%(k—1)+B-u(k—1)+w(k—1)+[0 p(k—1) 0]

y(k) = C-x(k) + (k) "

System states at trial k — 1 are mapped to future states by state
transition matrix A and adjusted by foot placement motor command
u(k — 1), which represents the input to the model. Since the foot
placement action u(k — 1) represents the transition from trial k — 1 to
trial k, the same target is associated with x,(k — 1) and x5(k). States
are also perturbed by a prism-associated parameter p and process
noise w, where w = [w, w, w;]" and where W(k — 1) is drawn from
independent, zero-mean, normal distributions with covariance matrix
Q. Process noise components w,, w,, and w5 are associated with
unmodeled variations (e.g., random perturbations or other aspects
of the task not captured by the model) in subject’s initial starting
position that affect relative target position, relative head-body
rotation that contributes to the visuomotor mapping, and foot
placement, respectively. The actual states at trial k are mapped to
the observations available to the subjects by the output matrix C

and also corrupted by sensory noise ¥, where ¥ = [v, v,]" and

where V(k) is drawn from independent, zero-mean, normal distri-
butions with covariance matrix R.

There are two equivalent options for representing the prism noise
S0 as to cause Gaussian-like measurement perturbations. Prism noise
may be represented as perturbations of x,, where parameter p would
model both the mean prism shift and the trial-by-trial prism noise
effects. Prism noise may also be represented as sensory noise. In this

case, parameter p would model the mean prism shift and parameter v
would model the prism noise. Although it is unclear which model
form best represents a subject’s neural representation of prism noise,
simulations validated that these options are mathematically equivalent
(data not shown). We chose to model the prism noise as sensory noise
because it allows direct use of the Kalman equations to predict
controller feedback gains and thus subject responses to prism noise
perturbations (see Sensory prediction error controller).

Sensory noise components v, and v, are then associated with the
effect of prism noise on target sensing and foot placement error
sensing, respectively. Since the foot placement action demarcates
individual trials, the same prism lenses affect sensing of target
location at trial k — 1 and foot placement error at trial k. We
parameterized the relative effect of the prism noise on these two
measurements with a scaling factor a, where v,(k) = a-v,(k — 1).
Therefore, we directly varied v, to mimic the experimental prism
noise conditions, whereas we considered « fixed across conditions.
Matrix parameters are defined in Table 1.

To simulate the visually guided walking model, the model input u
must be defined at each trial, and we tested two competing control
models for planning this command (described in Sensory prediction
error controller and Task error controller). We compared their ability
to predict experimentally measured adaptations in response to pertur-
bations of the visuomotor mapping. In the sensory prediction error
controller, a state estimator predicts target line location and the subject
steps toward that estimate. The target location estimate updates at
each trial on the basis of sensory prediction error. In contrast, the task
error controller estimates a correction term and steps toward the
sensed line position plus the correction term. The correction term
updates at each trial on the basis of sensed foot placement error. In
both controllers, sensed errors are corrupted by prism noise.

Sensory prediction error controller. In the sensory prediction error
controller (SPEC), a state estimation controller uses a forward model
that parallels the dynamics of the visually guided walking model to
produce estimates of relative target position £,, mean prism shift £,,
and foot placement error £; (Eq. 2). The foot placement command is
planned by the simple strategy of stepping directly to x,, after which

feedback measurements y are used to update the state estimates.
u(k—=1)=[1 0 0] -%(k—1)
(k) =A-Z(k—1)+B-u(k—1) (@)

£ =200 + L- (50 - €-%.8)

Table 1. Modeling parameters
Parameter Values Description
A 1 00 State transition matrix
0 10
-1 00
B [00 17 Input matrix
c 110 Output matrix
00 1
o var(w;) 0 0 Process noise covariance
0 var(wz) 0 matrix
0 0 V’dI(W3)
R var(v;) 0 Sensory noise
0 Var(a . ) covariance matrix
v
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The state estimator is composed of a forward model that generates
an initial state estimate x.(k), where X = [£, £, £5]" based on the
previous state estimate Xk — 1) and the foot placement motor
command u(k — 1). The final estimate X(k) is obtained by adjusting the

initial estimate by the sensory prediction error feedback y(k) — C-x.
(k), scaled by the estimator feedback gain L. Reflected in these
equations is the assumption that the state estimator has access to the
control input u.

Under this interpretation, L is a matrix of sensory weightings that
affect how strongly sensory prediction errors update the estimated
system states. The Kalman filter method is one design approach for
solving for these weightings. Assuming Gaussian sensory and process
noise, the Kalman filter optimally designs L to minimize the variance
of the sensory prediction error (Simon 2001) using the Riccati equa-
tion (Bryson and Ho 1975). This takes into account system parame-
ters, A and C, and noise parameters, Q and R. In our model, the
estimator is assumed to initially know the values of Q and R, whereas
the subjects in our experiments must learn these statistics during the
baseline phase.

The Kalman filter algorithm produces relatively large entries for L
when the process noise perturbing a state is large compared with the
sensory noise corrupting measurement of that state. Conversely,
relatively small weightings are optimal when sensory noise domi-
nates. Importantly, L also allows some measurements to play a larger
role in estimating a state than others, depending on their relative
amounts of sensor noise. For very large weightings in the L matrix, the
estimated state will closely follow the sensory feedback scaled by that
weighting. When entries of L are zero, associated sensory feedback
signals do not contribute. Intermediate choices of L produce a con-
troller somewhere between these extremes, whereby sensory feedback
information filters through a forward model of the state dynamics.

Simulation of the walking model using the SPEC requires two
parameters directly estimated from the experimental conditions and
five free parameters with unknown values. Noise parameters are
defined by their variance. Prism noise v, matched the diopter variance
in the low-noise and high-noise experiments, with values of 3.03% and
5.667, respectively. Variance of v, for the no-noise condition was as-
sumed to be an order of magnitude lower than that of the low-noise
condition (0.3%). The parameter p induced the mean prism shift from the
human experiment, where p(trial 50) = 18 diopters, p(trial 110) = —18
diopters, and p equals zero for all other trials. Nominal values for the
remaining parameters (g, «, w,, w,, wy) were assumed constant across the
no-, low-, and high-noise conditions, where parameter g scales the output
of the model from prism diopter to foot placement coordinates. The
identified parameters minimized the sum of the squared error between the
model output (see Model simulations and predictions) and average foot
placement error across all subjects for the three adaptation phases. To
implement this system identification, we used MATLAB’s fminsearch.m
function.

Task error controller. We also tested a task error controller (TEC),
another commonly used representation of motor adaptation, as a
competing control system for planning u (Eg. 3) (see Haith and
Krakauer 2013 for a review). Here, the foot placement command
u(k — 1) is planned on the basis of the measured target location y,
biased by a corrected term, X,, which may be conceptualized as an
estimate of the mean prism shift, or visuomotor mapping. The cor-
rection term at trial k depends on the previous term and measured foot
placement or task error y,.

u(k—=1) =y (k—=1) = %(k— 1)
fz(k) :a-fz(k— 1) +m-y2(k— 1)

Learning rate m is a weighting term that determines how strongly
the previously measured task error updates the current correction
term. Forgetting rate a determines how the previous correction influ-
ences the current correction and is generally close to but less than 1.

3

Although m appears qualitatively similar to the estimator feedback
gain L, which scales sensory prediction errors to update the visuomo-
tor mapping estimate, the TEC adapts the correction term only on the
basis of perceived foot placement error. The models are also differ-
entiated by the fact that L is optimally derived from the noise
parameters, whereas the TEC has no formal methodology to consider
noise values when determining m. However, m does scale the influ-
ence of sensory noise, and therefore relatively smaller values of m are
expected to improve performance if sensory noise increases. Other-
wise, trial-to-trial variability of foot placement error would increase
without increasing the average accuracy.

Simulation of the walking model using the TEC requires known
parameter value p and three free parameters with unknown values (g,
a, m), where g and a are fixed and m is assumed to vary across the no-,
low-, and high-noise conditions. We performed parameter identifica-
tion to determine (g, a, m) as described previously in Sensory
prediction error controller.

Model simulations and predictions. We paired the competing foot
placement controllers with the visually guided walking equations and
simulated task performance by integrating the difference equations
over 115 trials. We completed SPEC-based simulations for the no-,
low-, and high-noise conditions after first solving for L on the basis of
the nominal parameter values derived from the parameter identifica-
tion. We completed TEC-based simulations at varying levels of m on
the basis of nominal values. Because the purpose of modeling was to
generate average expected adaptation profiles, we set the noise values
to zero during the simulations, and therefore only the mean prism shift
p influenced the visuomotor mapping.

Both controllers adapt to the prism shift during the adaptation trials,
reducing foot placement error over many trials (Fig. 2, A and B). The
SPEC specifically predicts that this adaptation slows for increasing
levels of prism noise (Fig. 2C). To compensate for increased noise, the
state estimator decreases weightings on sensory prediction errors
(components of L), and therefore these errors update the state esti-
mates less at each trial. This controller result is robust across a wide
range of noise parameters (Fig. 2F). For the TEC, decreases in
learning rate m correspond with slowing of the foot placement
adaptation (Fig. 2C), and this is true despite variations in the forget-
ting rate a (Fig. 2G). Both controllers therefore predict that compen-
sations in L or m to reduce foot placement errors associated with prism
noise will result in increased response times, defined as the number of
adaptation trials necessary to achieve 95% of the total adaptation.

The SPEC also predicts that two additional features of the adapta-
tion profile will vary with prism noise. Foot placement error in the first
adaptation trial indicates the initial sensitivity to the shift in mean
prism diopter and is expected to decrease with increasing prism noise
because sensitivity to sensory prediction error feedback regarding
target position is reduced (Fig. 2, A and D). As a result, the estimate
of the target position relies more on the predicted target position
determined by the forward model of the task, which is based on
previous experience. For the same reason, foot placement error is
expected to first increase before decreasing during the adaptation trials
for high levels of prism noise (Fig. 2, A and E). Error buildup, the
number of trials where error increases before decreasing during
adaptation, occurs when the state estimator incorrectly attributes the
mean prism shift to a change in relative target location x, instead of
the visuomotor mapping x,. Sensory prediction error feedback cor-
rects the state estimates over time, but this correction is slower (error
buildup increases) for increased prism noise. Both controller out-
comes are robust across a wide range of noise parameters (Fig. 2F).
Importantly, the TEC does not produce variations in first adaptation
trial error and error buildup; we thus use their presence or absence in
the empirical results to distinguish between these two competing
controllers.

Data and statistical analyses. We filtered the kinematic data from
our experiments using a fourth-order low-pass Butterworth filter
(cutoft frequency of 6 Hz). We determined foot placement on the
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target as the time at which point the foot marker anterior-posterior
velocity and acceleration profiles stabilized to zero. The medial-lateral
distance between the foot position marker and the center of the target
at this time point defined the medial-lateral foot placement error (see
Fig. 1A), where positive error represents foot placement to the right of
the target. Because the direction of the mean prism shift during the
adaptation phases rotated between the three noise conditions, we
changed the sign of the errors during leftward prism shifts to positive
for the purpose of our analyses and illustrations.

To test whether subjects adapted in the face of measurement
uncertainty, we compared performance at specific “probe” trials (i.e.,
foot placement error in last baseline, first adaptation, last adaptation,
and first postadaptation trials) using a two-way (condition X probe
trial) repeated-measures ANOVA, and Tukey’s post hoc tests for
significant main effects or an interaction. These probe trials had prism
shift values of the mean of each respective phase and thus allowed
comparisons across noise conditions.

We quantified three metrics of the effects of measurement uncer-
tainty on adaptation: /) error in the first adaptation trial; 2) the number
of trials of error buildup; and 3) two measures of adaptation rate,
response time and early adaptation error. To calculate response time,
we first smoothed the data using a five-trial running average and
identified the trial, k, where the average error of trials k — 2:k + 2 fell
below 95% of error in the first adaptation trial. We defined early
adaptation error as the average foot placement error across trials 2—9
in the adaptation phase of each noise condition, similar to other
research (Krakauer et al. 2005; Malone et al. 2011). We normalized
this value to account for differences in the first adaptation trial
between conditions by dividing it by the first adaptation trial error.
Whereas the response time generally captures how long it takes
subjects to reduce movement errors in the adaptation phase, the
second measure instead focuses on the period of rapid early adaptation
and does not depend on any extra treatment of the data. To test for
differences with each measure, we used separate one-way repeated-
measures ANOVAs and Tukey’s post hoc tests when warranted. We
analyzed data using custom-written MATLAB programs, and we used
JMP 12 software (SAS Institute, Cary, NC) for all statistical analyses
with an alpha level of 0.05.

RESULTS

We first confirmed that subjects adapted in the face of
measurement uncertainty. Figure 3A illustrates group mean
(=SE) foot placement error across the baseline, adaptation, and
postadaptation phases for each of the three noise conditions.
Figure 3 demonstrates that error increased significantly in the
adaptation phase compared with baseline but progressively
decreased over repeated trials. In the postadaptation phase, we
found large errors in the opposite direction that quickly de-
creased over five trials. As shown in Fig. 3B, a significant
probe trial main effect (F,5, = 510.6, P < 0.0001) and
condition X probe trial interaction (Fg 55, = 7.1, P < 0.0001)
indicated that subjects fully adapted to the mean prism shift
regardless of the underlying prism noise (compare first and last
adaptation trials, and last baseline and adaptation trials). The
significant negative aftereffect in the postadaptation phase
(compare last adaptation trial with first postadaptation trial)
indicates that subjects stored the new mean visuomotor map-
ping created by the prisms.

Increasing measurement uncertainty slowed adaptation, a
result predicted by both our controllers. Specifically, we found
that greater prism noise led to slower adaptation when comparing
foot placement error early in the adaptation phase (i.e., mean of
trials 2-9) and the response time between noise conditions. The
mean foot placement error in the high-noise condition greatly

exceeded that in the low- and no-noise conditions (Fig. 3C;
F, 46 = 26.1, P < 0.0001). The response time measure showed
similar results (Fig. 3D; F, 45 = 24.1, P < 0.0001). In this
case, response time in the high-noise condition exceeded re-
sponse time in the low-noise condition, which differed signif-
icantly from the no-noise condition.

Both SPEC and TEC explained the average measured adap-
tation profiles (see Fig. 4). The SPEC captured 95.2% of the
variance in the average data (Fig. 4, A and C). Process noise
parameters w;, w,, and ws, identified by least-squares optimi-
zation, were of comparable magnitude as the prism noise
parameters, with values of 5.28 = 1.42, 0.40 %= 0.12, and
2.41 = 0.81 (mean * CI), respectively. An identified value for
a of 1.08 = 0.48 suggests that the prism lenses equally affected
target and foot placement error sensing. Interestingly, the TEC
explained 95.8% of the variance in average data (Fig. 4B),
although this controller does not capture the initial adaptation
behavior, as demonstrated by the residuals (Fig. 4D). Identified
values for m of 0.197 = 0.018, 0.093 = 0.007, and 0.076 *
0.006 reflect the decreased adaptation rates across the no-,
low-, and high-noise conditions, respectively. Thus direct fit-
ting of the adaptation data does not distinguish the two con-
trollers, because the total explained variance is equivalent.
Differences in initial adaptation behavior between the two
controllers are reflected in the model states (Fig. 4, E and F),
where initial estimates of target location vary as a function of
prism noise in the SPEC.

As supported by the SPEC, foot placement error in the first
adaptation trial decreases with increasing prism noise level.
This trend is based on the expectation that subjects will reduce
the weighting of sensory prediction error feedback regarding
target position in favor of the forward model prediction of
line position when faced with increased prism noise. When
we focused on this trial (Fig. 3E), we found smaller error in
the high noise condition compared with both the low- and
no-noise conditions (P < 0.05, based on post hoc tests fol-
lowing a significant condition X probe trial interaction de-
scribed earlier). Specifically, we observed 31.4% and 65.2%
greater error in the low- and no-noise conditions, respectively,
compared with the high-noise condition. Furthermore, we
found smaller error in the low-noise condition compared with
the no-noise condition.

We also observed error buildup in the adaptation profiles
(Fig. 3A, right), a feature specifically predicted by the SPEC
(see Fig. 2). The number of trials of error buildup, character-
ized by an initial increase in foot placement error prior to a
gradual decrease, tended to increase with prism noise (Fig. 3F).
We found greater error buildup in the high-noise condition
compared with both the low- and no-noise conditions (F, 45 =
16.0, P < 0.0001).

DISCUSSION

Our findings suggest that state estimation is used to accu-
rately control foot placement during walking. Whereas in-
creased measurement uncertainty increases foot placement
errors, subjects learned to mitigate these effects by increasing
reliance on a predictive model when given sufficient prior
experience with this uncertainty in the baseline phase. This
learning likely occurs in the context of adjusted weighting on
sensory prediction error, and not measured task error, as
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evident by the timing and shape of subsequent corrective
adaptations to a new visuomotor mapping condition.

Do our results clearly distinguish between the two foot
placement controllers? Model outputs using both controllers fit
the time course of the adaptation profiles equally well, al-
though this outcome is partially explained by the fact that both
controllers produce exponential decays and that this feature
dominates the adaptation profile over the 60 measured trials.
The other two factors, first adaptation trial error and error
buildup, contribute significantly less to the variance of the
adaptation signal and, therefore, to the strength of the model
fits. However, coefficient of determination metrics are limited
for nonlinear models (Spiess and Neumeyer 2010) and also are
not the only way of determining goodness of fit. The SPEC is

convincingly distinguished by its prediction that first adapta-
tion trial error and error buildup vary as a function of mea-
surement uncertainty. A graphical analysis of the residuals also
emphasizes this point (Fig. 4, C and D).

Decreases in first adaptation trial error and adaptation rate
with greater prism noise are substantiated by the results of
reaching experiments (Herzfeld et al. 2014; Kording and Wol-
pert 2004; Wei and Kording 2010). Although other studies do
not directly quantify first adaptation trial error, our findings
about this measure correspond well with their error sensitivity
metrics, which quantify the trial-to-trial relationship between
visual perturbation value and the resultant error. In this context,
the brain likely becomes less sensitive to sensory prediction
error feedback (or uses vision less) with greater measurement
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uncertainty and thus relies more on forward prediction. This
notion can also explain the lower adaptation rate, as shown in
our results and previous research related to reaching (Experi-
ment I in Burge et al. 2008; Wei and Kording 2010) and
standing balance (Stevenson et al. 2009), that increases visual
feedback uncertainty through target blur or dot clouds. Al-
though Burge et al. (2008; see Experiment 3) used random
trial-to-trial mappings to create greater measurement uncer-
tainty, they found no effect on adaptation rate. However, their
perturbations only affected visualized hand position, not the entire
visual field as we have done in the present study, and were drawn

randomly from a Gaussian distribution without consideration of
order effects. In contrast, we reordered our randomly drawn
perturbations to increase the perception of noise about a mean
shift and applied them uniformly to the visual field, possibly
increasing the likelihood that noise statistics were learned and
attributed to sensory noise within the baseline period.

The presence of error buildup has not been observed in other
motor adaptation studies or been proposed as evidence of state
estimation-based control. Error buildup in our SPEC model
occurs because the state estimator incorrectly attributes sensory
prediction errors associated with the initial foot placement
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errors to a shift in estimated target location X, instead of
estimated mean prism shift X, (Fig. 4E). This behavior is
possible in a visually dominant task where a change in a sensed
state (e.g., measured target location y,) could be attributed to a
change in multiple body states (e.g., x; or x,), and other
sensory information is not helpful for making the distinction.
This behavior is also only expected to occur when subjects are
exposed to measurement uncertainty prior to a sustained mean
shift requiring adaptation, relatively uncommon conditions in
motor adaptation studies. Our findings support the use of our
experimental protocol and induction of error buildup as a
possible tool for demonstrating and studying state estimation in
future reaching and stepping motor control studies.

Given the perturbations applied in this study, we believe
state estimation is the appropriate framework for developing a
predictive model and drawing conclusions from the experimen-
tal findings. However, the nervous system likely relies on
additional mechanisms to compensate for other perturbations.
Foot placement in real-world environments would face a vari-
ety of perturbation types over a range of time scales. Presum-
ably, the nervous system attempts to optimally respond to each
of these perturbations. In the context of compensating for
noise-like perturbations (zero mean and very low persistence)
of varying amplitude, an optimal controller would inherently
resemble a state estimator. In this context, persistence refers to
the likelihood of a perturbation repeating from trial to trial
(high persistence = high likelihood of a repeat). Therefore, any
conservative strategy of aiming more centrally with increased
noise-like perturbations will converge to be equivalent to
optimal state estimation (Kalman filter) if the subject’s actions
are optimal or near optimal. Alternatively, when compensating
for perturbations with varied persistence (zero mean and con-
stant amplitude), an optimal controller would resemble those
proposed by Herzfeld et al. (2014) and Kording et al. (2007).

Whereas purposeful stepping to a visual target represents a
subset of walking behavior, state estimation control is likely
applicable to walking control in general. Lateral instability
requires significant active feedback control of foot placement,
presumably based on a variety of sensory inputs, to ensure
balance during walking (Bauby and Kuo 2000; Donelan et al.
2004; Fitzpatrick et al. 2006; O’Connor and Kuo 2009). State
estimation may provide a means to improve stepping accuracy,
and thus stability, by combining multiple noisy sensory chan-
nels with an internal model of the walking dynamics. Walking
over rough terrain or complicated footpaths would similarly
benefit by incorporating state estimation. Thus, although the
sensory weightings during our experimental task are likely
different than those in more typical walking scenarios, we
expect that the general use of state estimation is common
between them, even when a strong reliance of vision is absent.

The notion that state estimation drives foot placement during
walking, as it does for hand position during reaching, implies
that these tasks may share common neural substrates. How-
ever, locomotion is often studied from the perspective that
pattern-generating, reflexive, and balancing circuits located in
the spinal cord and brain stem dominate its control (Duysens
and van de Crommert 1998; Grillner et al. 2008; Pearson
2008). Conversely, studies in reaching consider that the precise
and often visually guided nature of arm movements require
cortical control, involving the posterior parietal (PPC), premo-
tor, and motor cortices in particular (Kalaska 2009; Rizzolatti

et al. 2014; Vesia and Crawford 2012). Despite these differ-
ences, reaching is hypothesized to have evolved from quadru-
pedal locomotion (Dietz 2002; Georgopoulos and Grillner
1989). Indeed, the PPC and motor cortex are increasingly
recognized as playing key roles in modifying gait on the basis
of vision (Drew and Marigold 2015). In fact, many pyramidal
tract neurons in the motor cortex demonstrate similar discharge
activity, as well as temporal and magnitude relationships with
muscle activity, during reaching and locomotion (Yakovenko
and Drew 2015). In addition, recent neuroimaging work has
shown that although effector-specific motor planning activity is
encoded in certain PPC regions (e.g., anterior intraparietal
sulcus, aIPS, for hand movements and anterior precuneous for
foot movements), the anterior superior parietal lobe and medial
intraparietal sulcus (mIPS) are active in planning visually
guided eye, hand, and foot movements (Heed et al. 2011;
Leoné et al. 2014). Interestingly, the pattern of activity in these
regions does not distinguish between the two types of limb
movement.

Generation of forward model predictions and state estima-
tion are proposed functions of the cerebellum and PPC, respec-
tively (Shadmehr and Krakauer 2008). For instance, predictive
scaling of grip force is impaired in cerebellar patients relative
to that in healthy control subjects (Nowak et al. 2004, 2007).
The cerebellum is also necessary for sensory prediction error to
drive visuomotor adaptation during reaching (Taylor et al.
2010; Tseng et al. 2007). In addition, neurons in the monkey
PPC encode an estimate of the real-time angle of a joystick-
controlled cursor used to make reaches to targets (Mulliken et
al. 2008). Further indirect support comes from studies of rapid
online corrective or change-in-direction movements, which test
for rapid integration of visual feedback with a real-time esti-
mate of limb and target state. For example, transcranial mag-
netic stimulation (TMS) to the lateral cerebellum disrupts the
initial change in reaching direction to a target and increases
endpoint finger error, and these results are consistent with the
hand estimate being out of date (Miall et al. 2007). Addition-
ally, TMS to mIPS at the onset of goal-directed reaches
disrupts path corrections after unexpected target shifts (Des-
murget et al. 1999), and TMS to aIPS impairs the ability to
produce the appropriate forearm orientation when the grasp
object is suddenly rotated (Tunik et al. 2005). We speculate
that the cerebellum and PPC play a role in our task, and in
walking in general, given that /) cerebellar patients are slower
and less able to adapt to prisms to control walking trajectory
(Morton and Bastian 2004); 2) the PPC is important in adaptive
gait modifications that result in changes in paw placement in
cats (Lajoie and Drew 2007; Marigold and Drew 2011); and 3)
neuroimaging work demonstrates that both regions are active
during reaching prism adaptation (Clower et al. 1996; Luauté
et al. 2009).

Our results have implications for understanding recovery of
function and the design of rehabilitation programs following
neurological injury that impairs walking. First, greater mea-
surement noise (e.g., due to eye disease, brain injury, or
peripheral neuropathy) may cause the nervous system to rely
more on a predictive model during and after the adaptation
process. Second, therapies or augmentations that actually re-
duce measurement uncertainty may help people adapt faster in
rehabilitation settings.
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In conclusion, we used prism noise in a visuomotor adapta-
tion paradigm to demonstrate that state estimation underlies
foot placement control during walking. A state estimation-
based control model for planning foot placement specifically
predicted how adaptation to a visuomotor mapping shift would
change as a function of measurement uncertainty. This result
not only parallels studies of reaching and grasping movements
but also suggests that the robust theoretical and experimental
framework for state estimation-based control is not confined to
discrete voluntary upper limb tasks. Thus these findings ex-
pand the applicability of current models of motor adaptation
for understanding central problems in motor control and for
devising clinical corrections for improving upper and lower
limb function.
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