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Snyder KL, Snaterse M, Donelan JM. Running perturbations
reveal general strategies for step frequency selection. J Appl
Physiol 112: 1239 –1247, 2012. First published January 12, 2012;
doi:10.1152/japplphysiol.01156.2011.—Recent research has sug-
gested that energy minimization in human walking involves both a
fast preprogrammed process and a slow optimization process. Here,
we studied human running to test whether these two processes
represent control mechanisms specific to walking or a more general
strategy for minimizing energetic cost in human locomotion. To
accomplish this, we used free response experiments to enforce step
frequency with a metronome at values above and below preferred step
frequency and then determined the response times for the return to
preferred steady-state step frequency when the auditory constraint was
suddenly removed. In forced response experiments, we applied rapid
changes in treadmill speed and examined response times for the
processes involved in the consequent adjustments to step frequency.
We then compared the dynamics of step frequency adjustments
resulting from the two different perturbations to each other and to
previous results found in walking. Despite the distinct perturbations
applied in the two experiments, both responses were dominated by a
fast process with a response time of 1.47 � 0.05 s with fine-tuning
provided by a slow process with a response time of 34.33 � 0.50 s.
The dynamics of the processes underlying step frequency adjustments
in running match those found previously in walking, both in magni-
tude and relative importance. Our results suggest that the underlying
mechanisms are fundamental strategies for minimizing energetic cost
in human locomotion.

locomotion; energetics; neural control; step frequency

A FUNDAMENTAL PRINCIPLE underlying locomotion physiology is
that people select gait patterns that minimize energetic cost (1).
For a given speed of locomotion, humans and other animals
choose the gait that minimizes metabolic energy expenditure
(18, 26). And within both walking and running gaits, people
choose the step frequency that minimizes their energy use (9,
14–17, 20, 27, 33, 34). More generally, while people can
certainly walk or run in many different ways, people consis-
tently choose the patterns that minimize energetic cost.

Recent research on walking has suggested that there are at
least two distinct processes that underlie the selection of
energetically optimal gaits. Snaterse et al. (29) perturbed walk-
ing subjects with rapid changes in treadmill speed and mea-
sured the time scales involved in the subsequent adjustments to
step frequency. They found that a component of their subjects’
responses involved a gradual fine-tuning of step frequency
toward the steady-state value. The timing of this slow process
is consistent with direct optimization of energetic cost, which
is expected to be slow for at least three reasons. First, candidate
direct sensors of metabolic cost, such as chemoreceptors lo-

cated in the medulla oblongata and the carotid and aortic
bodies, as well as Group III and IV muscle afferents, are
reported to require at least 5 s to produce physiological re-
sponses to a stimulus (21, 22). Second, instantaneous measures
of energetic cost are not representative of the steady-state
average, which is best assessed by integrating over at least one
stride. Finally, the energy expenditure sensed at one particular
step frequency does not indicate which other frequency will
ultimately be optimal. It may be necessary for the person to
iteratively adjust their step frequency, in a process that only
gradually converges to the optimum. The compounded effects
of delays, averaging, and iterative convergence result in a slow
direct optimization process that may take on the order of tens
of seconds to reach steady state.

While this slow process appeared to be important, the
authors found that most of the step frequency adjustments were
governed by a fast process that occurred within the first few
seconds of a change in treadmill speed (29). Importantly, the
speed of the adjustments was too rapid to be due to direct
optimization of energetic cost. A second set of experiments
demonstrated that this fast process encoded the relationship
between speed and step frequency that minimized energetic
cost. Consequently, the authors concluded that the fast process
is a preprogrammed response—people rapidly predict the en-
ergetically optimal walking pattern based on prior knowledge
of the relationship between their gait and metabolic cost.

The purpose of this paper is to test whether these fast and
slow processes are specific to walking, or whether they repre-
sent general mechanisms underlying step frequency selection
in human locomotion. To accomplish this, we tested for their
presence in human running. This is a strong test of generality
because our current understanding is that the biomechanics of
the two gaits are quite different. Whereas walking is viewed as
an inverted pendulum system with its motion governed by
gravitational and inertial forces, running is viewed as a spring-
mass system with stored elastic energy contributing to its
motion (7). These biomechanical systems have different dy-
namic responses to perturbations (24, 25). Thus, finding similar
dynamics of step frequency adjustments in running to those
previously found in walking could not be explained by a simple
mechanical response to perturbation. Instead, it would suggest
that the same control strategies underlie gait parameter selec-
tion in walking and running, perhaps with the shared goal of
minimizing energetic cost, as this is one characteristic common
to both gaits (2, 7, 9, 11, 14, 15, 20).

We treat the person as a dynamic system that selects ener-
getically optimal gaits using internal processes that can be
identified by providing controlled inputs to the system and
measuring its dynamic response (Fig. 1A). Specifically, we
performed a variety of different perturbations on running
subjects and analyzed the time scales of the processes involved
in their adjustments to step frequency. We focused on measur-
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ing step frequency because the preferred steady-state value
minimizes metabolic cost, and there is a well-established
energetic penalty for frequencies faster or slower than the
preferred value (9, 14, 15, 20). To induce changes in step
frequency, we used two different types of experimental pertur-
bations, one involving physical changes and one in which the
only environmental changes were sensory. In the forced re-
sponse experiments, we applied rapid changes in treadmill
speed to running subjects in a manner similar to Snaterse et al.

(29), but additionally varied both size and direction of these
changes. Although suggestive, these physical perturbations do
not rule out a purely biomechanical response, so we also
performed nonphysical free response experiments. In the free
response experiments, a metronome initially enforced step
frequency at a value different from the preferred value, and we
observed how step frequency changed once the metronome
beat was replaced with white noise. To test whether the
processes identified were specific to perturbation type and/or
gait or instead represent general control mechanisms for se-
lecting energetically optimal gait patterns during human loco-
motion, we compared the dynamics found in our different
running perturbations to each other and to previous results for
physical walking perturbations.

MATERIALS AND METHODS

Subjects and equipment. Eleven subjects participated in this study.
All subjects (6 women; 5 men; body mass 62.6 � 9.2 kg; leg length
0.93 � 0.05 m; means � SD) were recreational athletes or members
of the university track and field team. Simon Fraser University’s
Office of Research Ethics approved the protocol, and all subjects gave
written informed consent before participation.

Subjects ran on a treadmill (Trackmaster 425, Full Vision) modi-
fied to allow the treadmill belt speed to be controlled by an analog
input signal. The desired speed was dictated via computer in real time
using a custom-written program (Simulink Real-Time Workshop,
Mathworks, Natick, MA). The actual speed was sampled at 1,000 Hz
using a magnet affixed to the treadmill flywheel and a reed sensor
affixed to the treadmill chassis. We calculated step frequency from the
time between consecutive foot strikes determined using pressure-
sensitive transducers sampled at 500 Hz fixed to the soles of subjects’
feet (Multimode Footswitches, Noraxon, Scottsdale, AZ). All data
input and output were done via an analog/digital converter (National
Instruments, Austin, TX) and saved for later analysis. We calculated
step period from consecutive heel strikes, and a moving average of
two consecutive steps was used to nullify any differences in place-
ment or sensitivity of the foot switches. Before any data were
collected, we acclimated subjects using a 10-min warm-up consisting
of running on the treadmill at 2 m/s. Subjects were then asked to run
briefly at the fastest and slowest speeds required by our protocol to
verify that they could sustain the full range of speeds.

Free response experiments. During these experiments, subjects
began running at a constant step frequency enforced using the beat of
a metronome. After a period of time, the metronome beat was
replaced by white noise (Fig. 2A). Because the treadmill speed was
fixed, subjects were required to keep their average speed constant
once the frequency was released. However, subjects were not required
to change their step frequency and any change could occur over any
time scale. We examined whether subjects adjusted step frequency
when the enforced frequency was released and identified the time
scales of the processes that contributed to any measured change.

Subjects ran at 3 m/s with step frequency first enforced by a
metronome through headphones. We enforced four different step
frequencies on each subject (Table 1). Two of these step frequencies
were slower than the preferred value at 3 m/s with the first equal to the
preferred step frequency at 2 m/s and the second defined as twice as
slow. For instance, if a subject had a preferred step frequency of 2.8
Hz at 3 m/s and 2.5 Hz at 2 m/s, their slowest enforced frequency
would be 2.2 Hz. The other step frequencies were faster than the
preferred value with one equal to the preferred step frequency at 4.5
m/s and the other defined as twice as fast. Each trial was 100 s in
duration and each condition was repeated three times for a total of 12
trials. The time at which the metronome beat was replaced with white
noise was randomly assigned to be 30, 40, or 45 s. If a subject was
unable to match the enforced step frequency by the last 10 s of step

Fig. 1. General strategies underlying the selection of step frequency. A: we
treat the person as a dynamic system that selects energetically optimal gaits
using internal processes that can be identified by providing controlled inputs to
the system and measuring its dynamic response. B: on the basis of previously
walking research, we hypothesized that a combination of a fast preprogrammed
process and a slow direct optimization process underlie the selection of
energetically optimal running gaits. C: mathematically, these processes can be
represented by 2 transfer functions that act on 2 different time scales.
D: illustrations of the possible system responses to a step input. If only the fast
process is active, the system rapidly reaches steady-state and never overshoots
the steady-state value (dotted line). If only the slow process is active, the
system gradually approaches the steady-state value (dashed line). If both
processes are active, the fast process can result in the system either initially
undershooting or overshooting the steady-state value (dotted-dashed lines).
The slow process will cause the system to gradually converge to the steady-
state value. Whether an overshoot or undershoot occurs is determined entirely
by the relative contribution of the 2 processes, which is determined by their
amplitudes and not by their time constants. The righthand side of the gray box
illustrates the onset of the step input.
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frequency restriction, the trial was not included in further analysis.
This occurred in only two trials. One subject was found not to vary
step frequency between 2 and 3 m/s; we removed him from further
analysis.

Forced response experiments. For these experiments, we suddenly
changed treadmill speed and examined its effect on step frequency
(Fig. 2B). While this perturbation required subjects to immediately
change speed to remain on the treadmill, they could change speed
through any combination of step length and step frequency adjust-
ments, including changing only step length while keeping step fre-
quency constant. Importantly, the physical requirement of rapidly
changing speed to remain on the treadmill does not specify any slow
adjustments to step frequency. We compared the response times of the
processes involved in step frequency adjustments in these forced
response experiments with those identified in our free response
experiments, with similar results indicating that common control
mechanisms underlie the response to these distinct perturbations.

We imposed a series of steplike speed changes on subjects while
they ran on the treadmill. They began running for 90 s at 2.0 m/s and
then were given 90-s periods of speeds of 2.5, 3.0, 3.5, 4.0, and 4.5
m/s in random order, each with a recovery period of 90 s at 2.0 m/s
between the intervals. The preferred step frequency was calculated to
be the average step frequency from seconds 60 to 90. The maximum
belt acceleration was set to 0.8 m/s2 for both increases and decreases
in speed. Depending on the magnitude of these perturbations, speed
changes lasted for 0.8–5 s.

System identification. We used standard techniques from system
identification to quantify the dynamics of step frequency adjustments.

System identification is a general term to describe algorithms for
constructing mathematical models of dynamic systems from measured
input-output data (23). Based on previous research that had identified
both a fast process and a slow process underlying the response to
perturbations in walking (29), we used a two-process model for
parameter identification (Fig. 1B). The mathematical representation of
this model, expressed in the complex frequency domain, takes the
form:

Y(s) � �� A f

� fs � 1
�

As

�ss � 1�e�Tds�X(s), (1)

where X(s) is the input and Y(s) is the output (Fig. 1C). The param-
eters �f and Af represent the time constant and amplitude for the fast
process, respectively. Correspondingly, the parameters �s and As

represent the slow process time constant and amplitude, respectively.
The parameter Td is a time delay to account for fixed physiological
time delays such as human reaction time. If the system input is an
instantaneous step function of unit magnitude, and the system output
is step frequency, f, the equivalent time domain expression is:

�f(t) � A f�1 � e
�(t�Td)

�f � � As�1 � e
�(t�Td)

�s � , (2)

where t is time and the remaining parameters are as defined above.
Figure 1D illustrates how the output of this system in response to a
step input is the sum of two exponential functions. The total response
depends on the speed of the fast and slow processes as well as their
relative contributions.

Fig. 2. Experimental methodology. A: in our free response experiment, subjects began running at a constant step frequency enforced using the beat of a
metronome played through headphones. After a period of time, the metronome beat was replaced by white noise. Speed was kept fixed. B: in our forced response
experiment, we suddenly changed treadmill speed. In both experiments, we measured any immediate and long-term adjustments to step frequency that occurred
in response to the perturbations.

Table 1. Enforced and preferred step frequencies at 3 m/s for each subject

Subject
Enforced Slowest Step

Frequency, Hz
Enforced Slower Step

Frequency, Hz
Preferred Stride Frequency

at 3 m/s, Hz
Enforced Faster Step

Frequency, Hz
Enforced Fastest Step

Frequency, Hz

1 2.40 2.57 2.75 3.17 3.59
2 2.40 2.52 2.65 2.90 3.16
3 2.55 2.71 2.86 3.08 3.30
4 2.44 2.68 2.92 3.28 3.64
5 2.48 2.65 2.81 3.09 3.37
6 2.39 2.54 2.68 2.91 3.14
7 2.52 2.67 2.81 3.06 3.32
8 2.40 2.51 2.73 2.99 3.25
9 2.74 2.84 2.95 3.14 3.33

10 2.59 2.69 2.79 3.02 3.25

We enforced 4 step frequencies for each subject at 3 m/s. The intermediate slow step frequency was enforced to be the subject’s preferred step frequency at
2 m/s. The slowest step frequency was twice as far from preferred step frequency at 3 m/s as the subject’s preferred step frequency at 2 m/s. Similarly, the
intermediate fast step frequency was enforced to be the subject’s preferred step frequency at 4.5 m/s. The fastest step frequency was twice as far from preferred
step frequency at 3 m/s as the subject’s preferred step frequency at 4.5 m/s.
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We used our measurements from the free response experiments to
identify the unknown parameters in this two-process model. To
prepare the data for this analysis, we normalized each trial’s change in
step frequency from 0 to 1 by subtracting the initial step frequency
and dividing the result by the difference between the ending and initial
step frequencies. For instance, if the initial enforced step frequency
was 3.0 Hz, and the ending step frequency was 2.8 Hz, these would
convert to (3.0 � 3.0)/�0.2 � 0 and (2.8 � 3.0)/�0.2 � 1, respec-
tively.

Preliminary analyses showed that some responses demonstrated an
initial undershoot with the initial response approaching but not reach-
ing the steady-state frequency (Fig. 1D). Other trials demonstrated an
initial overshoot, with the initial response overshooting the steady-
state frequency (Fig. 1D). Here, we define steady-state frequency as
the average step frequency over the last 20 s of each trial. Before
further analysis, we split the data from the free response experiments
into two groups based on their initial response to the perturbation. We
used the first group, the undershoot data, to identify the unknown
parameters corresponding to the dynamics of the two mechanisms.
Because the metronome was switched from a condition of being on to
being off, we used a step function as the input for these free response
experiments.

To calculate these best-fit parameters, we employed a gradient-
descent based algorithm, seeded with an initial estimate of the param-
eter values. The identified parameters minimized the sum of the
squared error between the model prediction and the measured step
frequency adjustments for all undershoot trials. The identified param-
eters were insensitive to the initial estimates of parameter values. To
implement this system identification, we used MATLAB’s idproc.m
and pem.m functions. We quantified the fast and slow processes using
response time, defined to be the time required to achieve 95% of the
total change for the given process (�3 times the time constant). We
quantified the relative contributions of the two processes using the
magnitudes of the amplitude parameters.

To test whether the measured adjustments to step frequency could
be described by a simpler model, or if the dynamics were more
complex than could be captured by our two process model, we also
tested both one-process and three-process models. The degree to
which the different models captured the measured responses was
quantified by calculating R2 values and by examining the residuals,
defined as the difference over time between the model prediction and
the measured data. We calculated R2 values in two ways. The first
calculation used the total error between the model prediction and the
measured data for the individual trials by all subjects (individual fit).
This is a very strict test: in the two-process model, only five free
parameters were used to describe the 43,086 total measurements from
the free response undershoot data (10 subjects contributed 86 trials
with each trial containing 501 data points). These comparisons led to
deceivingly low R2 values because the steady-state variability in step
frequency was large relative to the step frequency changes induced by
the perturbations. To reduce the effect of the steady-state variability
on our goodness-of-fit metric, we also calculated the error between the
model prediction and the average response across trials and subjects
(average fit). This is still a strict test: the two-process model used five
free parameters to describe 501 data points equating to 496 statistical
degrees of freedom.

System validation. To test whether the identified processes were
used consistently across all free response trials, we determined how
well the two-process model predictions fit the measured overshoot
data. We fixed the time constants and the time delay identified from
the undershoot data and did not allow these parameters to vary while
we searched for the best-fit amplitude parameters. We did not fix the
two amplitudes because we had no a priori prediction concerning the
relative contribution of the two processes. We assessed model fit by
calculating the residuals and the R2 values for both the individual and
average data.

We also tested whether the processes identified from the free
response trials explained the measured responses to rapid changes in
treadmill speed. We first eliminated any forced response trial that had
a step frequency change of smaller than 0.03 Hz, a value within the
noise of the step frequency measurement. Because subjects’ step
frequencies do not always change very much at slow speeds, this did
occasionally occur, but only in three trials. Both the measured change
in treadmill speed and the measured change in step frequency were
then normalized to 1 for all trials as described earlier. Next, we binned
the remaining data according to whether the initial response undershot
or overshot the steady-state value. We then determined how well the
two-process model, identified from the free response undershoot
trials, predicted the measured step frequency adjustments in response
to this distinct perturbation. We fixed the time constants and the time
delay parameters that were identified from the free response under-
shoot data and searched for the best-fit amplitude parameters. The
normalized treadmill speed was the input into this system identifica-
tion. As with the earlier comparisons, we assessed model fit by
calculating the residuals and the R2 values for both the individual and
the average data.

We used Chi-square tests to determine whether specific subjects,
specific perturbation directions or specific perturbation magnitudes
were more likely to exhibit undershooting or overshooting patterns. A
P value of 0.05 was considered significant.

RESULTS

Free response experiments. When step frequency was en-
forced and then released, subjects exhibited rapid changes in
step frequency followed by longer-term adjustments that grad-
ually brought step frequency to its steady-state value. We used
the undershoot data—where the initial adjustments in step
frequency initially undershot the steady-state value—to iden-
tify the system dynamics and found that the measured dynam-
ics were well described by a two-process model (Eqs. 1 and 2;
Fig. 3A). The identified response times associated with each
process differed by more than 1 order of magnitude, with
values of 1.47 � 0.05 s (mean � SD) for the fast process and
34.33 � 0.50 s for the slow process. The fast process domi-
nated the total response: the identified fast and slow process
amplitudes were 0.67 � 0.03 and 0.33 � 0.03, respectively.
The response to the perturbation began after a short delay
(Td � 0.37 � 0.02 s). The R2 value for the average fit was 0.97,
indicating that the model explained 97% of the average subject
behavior. The R2 value was lower for the individual fit, 0.36,
because steady-state variability in step frequency was large
relative to the step frequency changes induced by the pertur-
bations. The residual errors also indicated that the two-process
model was a good fit: the errors were small in magnitude,
randomly distributed around zero, and showed no particular
pattern with time (Fig. 3B).

Comparing the two-process model fits with those from
alternative models indicated that the simpler model was too
simple, and a more complicated model was not needed to
explain the measured results. A one-process model was not
sufficient to account for the observed adjustments in step
frequency, leading to large residual errors that showed a
distinct pattern over time (Fig. 3B). This was also reflected in
the R2 values for the two-process and one-process model fits,
which decreased from 0.36 to 0.25 for the individual fits and
0.97 and 0.80 for the average fits. The more complicated
three-process model did not provide any additional information
compared with our two-process model: the R2 values remained
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constant for the individual and average fits, respectively. Taken
together, these comparisons suggest that a two process model
is the simplest model required to describe the measured dy-
namics.

The two-process model also accurately described the step
frequency adjustments that initially overshot the steady-state
value, indicating that the identified processes were used con-
sistently across all free response trials (Fig. 3, C and D). This
is evident from the small changes in R2 values, which decreased
only slightly to 0.95 from 0.97 for the average fit comparisons
and increased to 0.54 from 0.36 for the individual fit compar-
isons. The goodness of fit was also evident from the low
magnitudes, random distribution, and lack of pattern observed
in the residual errors (Fig. 3D). The quality of this fit was
particularly impressive given that the time constants and time
delay parameters were fixed at the values identified from the
undershoot data, leaving only the two amplitude parameters to
vary when fitting the overshoot data. For this overshoot data,
the fast and slow process amplitudes were 1.33 � 0.01 and
�0.33 � 0.01, respectively. Thus, in both undershoot and
overshoot free response data, the fast process brought the step
frequency within 33% of the steady-state value while the slow
process fine-tuned the result.

Forced response experiments. Subjects exhibited similar
behavior in the forced response experiments as in the free
response experiments: there was a fast response followed by a

longer-term adjustment of step frequency to its final value
(Fig. 4). We made model predictions for the forced response
experiments by keeping the time constants and time delay
parameters fixed at the values identified from the free response
undershoot data, leaving only the two amplitude parameters to
vary. The time constants and delay identified from the free
response data were a good fit to the data measured in this
distinct experimental perturbation with average fit R2 values of
0.67 and 0.87 and individual fit R2 values of 0.19 and 0.38 for
the undershoot and overshoot data, respectively. The identified
amplitudes were similar between the two experiments, with
undershoot amplitudes of 0.78 � 0.01 and 0.23 � 0.01 and
overshoot amplitudes of 1.40 � 0.01 and 0.40 � 0.01 for the
fast and slow processes, respectively.

The two-process model identified from the free response
experiments did not entirely explain the adjustments in step
frequency in response to the perturbation to treadmill speed:
there were some additional dynamics that occurred within the
first few seconds (Fig. 4, B and D). This difference was not
unexpected; while the metronome provided an impulsive au-
ditory perturbation, the treadmill provided a physical pertur-
bation that was stretched out over a finite period of time. The
additional measured dynamics took place during the speed
changes, and the residual errors paralleled the acceleration of
the treadmill, indicating that they may simply reflect a biome-
chanical response to the treadmill acceleration (Fig. 4, B and

Fig. 3. Free response results. When step frequency was enforced and then released, subjects exhibited rapid changes in frequency followed by longer-term
adjustments that gradually brought frequency to its steady-state value. The top and bottom rows present the undershoot and overshoot data, respectively.
A: 1-process (gray line) and 2-process (thick black line) models were fit to the undershoot experimental data using a step input (dotted line) to represent the change
in the metronome signal. B: the residual error between the model and the experimental data shows that the 1-process model (gray line) was not sufficient to
describe the dynamics. We also fit a 3-process model, but it was so similar to the 2-process model (black line) that it could not be shown without obscuring the
residuals resulting from the 2-process fit. C: the time constants identified for the undershoot data were fixed and the amplitudes allowed to vary to find a 2-process
fit (thick black line) for the overshoot data (black line), again using a step input (dotted line) to represent the metronome. D: the residual error shows that this
fit also very closely matched the overshoot experimental data. In all graphs, the gray area is used to indicate the period prior to the onset of the perturbation (i.e.,
when the metronome was on). For clarity, we present the average data over all trials.
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D). These additional dynamics did not replace those resulting
from the fast and slow processes, but supplemented them.

Walking and running compared. The processes that we
identified in running match those found previously in walking,
suggesting that common mechanisms underlie step frequency
selection across gaits. Snaterse et al. (29) perturbed walking
subjects by changing treadmill speed and identified a fast
process response time value of 1.4 � 1.1 s, albeit with different
mathematical methods, which is very similar to running’s fast
process response time of 1.5 � 0.1 s. A similar correspondence
is observed for the slow process response times (27.6 � 16.2
s for walking and 34.3 � 0.3 s for running). In addition, the
relative contributions of the fast and slow processes were
similar between walking and running. The fast process ad-
justed step frequency to within 34% of the final steady-state
value during walking, and to within 23–40% of the final value
during running, depending on the type of perturbation.

DISCUSSION

Our results indicate that distinct fast and slow processes
contribute to step frequency selection during human locomo-
tion. The fast process dominates the overall response to per-
turbations, rapidly completing two-thirds of the total step
frequency change. The slow process takes about 20 times
longer to fine-tune step frequency and complete the return to
the energetically optimal gait. This is a robust finding; we

identified the same two processes in both walking and running
irrespective of whether subjects overshot or undershot the
steady-state value and irrespective of whether the experiment
physically perturbed the subjects or simply released them from
an auditory constraint. We also found that the relative contri-
butions of the fast and slow processes were similar between
walking and running, suggesting that not only do common
mechanisms underlie step frequency selection, but that the
mechanisms are of comparable importance across gaits. This
consistency may reflect a similar uncertainty in the frequency
prediction of the fast preprogrammed response, with the body
trying to maximize the benefit of the speed of this process
while minimizing the cost of its inaccuracy. Finding similar
dynamic responses to perturbations in both walking and run-
ning, despite very different biomechanical mechanisms under-
lying the two gaits (7), suggests that the two gaits share some
of the same underlying control strategies. The most likely
control goal is metabolic cost minimization as preferred
steady-state step frequency minimizes metabolic cost in both
gaits (9, 14, 15, 20).

One difference between the walking and running results was
the distinct bifurcation in initial response to running perturba-
tions, with some responses initially undershooting the steady-
state step frequency while others initially overshot. While there
was variability in the amount of overshoot or undershoot, these
were clear categories, not arbitrary groupings of continuously

Fig. 4. Forced response results. When speed was rapidly changed, subjects exhibited similar behavior to the free response experiments: there was a fast response
followed by a longer-term adjustment of step frequency to its final value. The top and bottom rows present the undershoot and overshoot data, respectively. A: the
2-process fit using the time constants identified for the undershoot free response data (thick black line) also matched the forced response undershoot data well
with the normalized treadmill speed used as input (dotted line). B: the residual errors demonstrated that there were some additional dynamics (black line) involved
in the forced response data that strongly paralleled the acceleration of the treadmill (gray line). C: the 2-process fit (thick black line) also closely approximated
the overshoot forced response data. D: the residual errors for the overshoot data also demonstrated additional dynamics (black line) that corresponded to the
treadmill acceleration (gray line). In all graphs, the gray area is used to indicate the period prior to the perturbation (i.e., when the treadmill was at its initial speed).
For clarity, we present the average data over all trials.
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varying responses. To further understand this pattern, we
determined whether it was dependent on individual subjects or
conditions. The only general pattern that emerged was that
subjects were more likely to undershoot than to overshoot in
both experiments (P � 2.0 � 10�8, Chi-square test). In the free
response and forced response experiments, 73% and 65% of
the trials were undershoots, respectively. There were some
additional experiment-specific effects. In the free response
experiments, the direction of perturbation had a significant
effect on the initial response with subjects more likely to
overshoot when released from a frequency higher than pre-
ferred (P � 8.8 � 10�6). In the forced response experiments,
some subjects were more likely to overshoot than undershoot
(P � 0.03). However, we did not find a direction-specific effect
in the forced response experiments, or a subject-specific effect
in the free response experiments, and neither experiment dem-
onstrated a statistically significant effect of perturbation mag-
nitude on the initial response. While it is not clear why some
subjects in some conditions initially overshot the steady-state
value, the combination of short- and long-term processes still
captured the observed dynamics very well.

There were a number of important limitations to our study.
First, treadmills impose a speed constraint that does not exist
when moving overground. We have performed free response
pilot experiments on subjects overground (unpublished), and
the preliminary results suggest that our observations are not
specific to treadmill locomotion. A second limitation is that we
draw conclusions about energy minimization without directly
measuring metabolic cost. This reflects a conscious decision to
focus on collecting a wide range of perturbations, which
eliminated the possibility of having the long-duration trials that
are required to accurately determine metabolic cost. Instead,
we have relied on previous research by a number of different
investigators, using a variety of experimental protocols, which
have all demonstrated that the preferred steady-state step fre-
quency minimizes metabolic cost (9, 14, 15, 20). There are
other running parameters that could be manipulated to change
metabolic cost (e.g., step width), but none so readily as step
frequency. For the present experimental protocol, our conclu-
sions regarding step frequency apply equally to step length.
This is because the treadmill always specified running speed
and speed is the product of step frequency and step length.

Our present experiments do not allow us to definitively
conclude which physiological pathways are responsible for the
fast and slow processes. Spinal reflexes, central pattern gener-
ators, and descending commands from the brain may all play a
role in both processes, and we cannot partition their contribu-
tions without further experiments. However, our present results
do exclude some important possibilities. First, the processes
are not simply biomechanical responses to a perturbation. This
is most clear from the free response experiments where the
perturbations were strictly auditory and all physical adjust-
ments were self-induced. While there were physical perturba-
tions in the forced response experiments, we observed addi-
tional fast adjustments to step frequency that occurred during
the perturbations (Fig. 4).

Second, the fast process we have identified is not the same
phenomenon as the stumbling reaction reflex. Previous studies
of the stumbling reaction reflex employed conceptually similar
treadmill belt speed perturbations to our forced response ex-
periments (4, 10). However, the belt accelerations used in these

experiments were designed to challenge the balance of their
walking subjects and were more than ten times greater than
those in our experiment (11.2 vs. 0.8 m/s2). Furthermore, our
free response experiments clearly demonstrate fast adjustments
to step frequency even though balance was not challenged with
a physical perturbation.

Finally, the fast process is too rapid to involve direct opti-
mization of metabolic energy expenditure. The fast adjust-
ments were essentially complete in under 2 s whereas feedback
from physiological sensors that sense signals directly related to
metabolic activity is reported to require at least 5 s to initiate
physiological responses to a metabolic stimulus (3, 13, 19, 21,
22). We consider this fast process preprogrammed because it
contributes to producing the energetically optimal response
without current knowledge of the actual energetic cost, relying
instead on prior knowledge of the association between gait and
metabolic cost. The name “preprogrammed” is not meant to
imply that this response involves no feedback whatsoever, as it
may be triggered from vision, proprioception, or other sensory
systems, and it may involve feedback mechanisms known to
underlie the control of locomotion, including spinal reflexes
(28). In contrast to the speed of the fast process, the �30 s
response time of the slow process is consistent with the
expected timing of direct optimization of metabolic cost. As
we described in the introduction, direct optimization is likely
slowed by the compounded effects of feedback delays, aver-
aging, and iterative convergence.

There are important energetic advantages to using both
optimization and preprogramming in the control of step fre-
quency. An advantage to optimization is accuracy; it can
automatically adjust to novel circumstances, such as variable
terrain or carrying a load, to converge on the energetically
optimal gait. The magnitude of this energetic benefit will vary
with the specifics of the situation as it depends on the precision
of the preprogramming and how long the steady-state gait is
maintained. The addition of a fast preprogrammed process also
has a clear energetic advantage over using optimization alone
in that it can better track the energetically optimal step fre-
quency in response to continuously varying speeds. This ad-
vantage is largest for intermediate speed changes; optimization
alone can track the optimal step frequency when speed is
changing very slowly and neither process can adjust suffi-
ciently fast when speed is changing very quickly.

To be more quantitative, we used our identified processes to
compare how a continuously varying speed affected the met-
abolic cost of running when using both processes, or just the
slow process, to track the optimal step frequency. Considering
speeds that sinusoidally oscillated between 2 and 6 m/s, the
difference between these two situations in their ability to track
the optimal step frequency was maximized with sinusoid pe-
riods of 18 s. At this period, running using the slow process
alone required an �5% greater metabolic cost compared with
using both processes to select step frequency. We estimated
this penalty using the known relationship between a change in
step frequency away from preferred and the consequent in-
crease in metabolic cost (30). The percentage difference is
relatively small because the relationship between speed and the
energetically optimal step frequency is relatively flat in run-
ning; even for large speed changes, the old optimal step
frequency is not far from the new optimal step frequency (8).
However, the magnitude of this penalty is not trivial: a 5%
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increase in metabolic cost when running at 4 m/s equates to
about a 40-W penalty for a 70-kg runner. Furthermore, if
conditions require variability at relatively fast speeds, any
metabolic penalty may push the runner over their lactate
threshold, greatly reducing the duration of the run (12). Under
the conditions in which running evolved, where humans may
have often been involved in an extended chase (5, 6), using a
fast preprogrammed process to maximize the sustainable run-
ning speed may have been an important determinant of sur-
vival.

These results relate directly to theories of optimal pacing
strategy in running races. Researchers have suggested that
athletes choose their initial pace based on previous experience
and environmental conditions, analogous to the role of the
preprogrammed process, and then adjust their pace during the
race based on feedback from physiological sensors, analogous
to the direct optimization process (31, 32). Our results suggest
that the role of preprogramming likely goes beyond estimating
initial race pace because, as described in the previous para-
graph, optimization is too slow to keep up with rapid changes
to speed characteristic of race surges. Racers who develop very
accurate preprogrammed processes would be at an advantage
in these situations; they could quickly select the metabolically
optimal gait for the changing speeds. It may even be a good
strategy for these racers to inflict surges, and their consequent
metabolic penalty, on the competitors with less accurate pre-
dictive mechanisms.

In summary, we found that two processes underlie the
selection of the energetically optimal gait in human locomo-
tion. Our subjects relied heavily on preprogrammed gaits to
rapidly select their preferred step frequency, and then gradually
fine-tuned that selection, perhaps using direct optimization.
The addition of a fast preprogrammed process has a clear
energetic advantage over using optimization alone in that it can
better track the energetically optimal step frequency in re-
sponse to continuously varying speeds. We observed these two
processes irrespective of whether subjects overshot or under-
shot the steady-state value and irrespective of whether the
experiment physically perturbed the subjects or simply re-
leased them from an auditory constraint. Furthermore, the
processes seen in running match those found in walking, both
in timing and relative importance, suggesting that the mecha-
nisms underlying these two processes are universal strategies
for minimizing energy in locomotion.
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