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Abstract

Animals of different sizes tend to move in a dynamically similar manner when travelling at speeds corresponding to equal values of a

dimensionless parameter (DP) called the Froude number. Consequently, the Froude number has been widely used for defining equivalent

speeds and predicting speeds of locomotion by extinct species and on other planets. However, experiments using simulated reduced

gravity have demonstrated that equality of the Froude number does not guarantee dynamic similarity. This has cast doubt upon the

usefulness of the Froude number in locomotion research. Here we use dimensional analysis of the planar spring–mass model, combined

with Buckingham’s Pi-Theorem, to demonstrate that four DPs must be equal for dynamic similarity in bouncing gaits such as trotting,

hopping and bipedal running. This can be reduced to three DPs by applying the constraint of maintaining a constant average speed of

locomotion. Sensitivity analysis indicates that all of these DPs are important for predicting dynamic similarity. We show that the reason

humans do not run in a dynamically similar manner at equal Froude number in different levels of simulated reduced gravity is that

dimensionless leg stiffness decreases as gravity increases. The reason that the Froude number can predict dynamic similarity in Earth

gravity is that dimensionless leg stiffness and dimensionless vertical landing speed are both independent of size. In conclusion, although

equal Froude number is not sufficient for dynamic similarity, it is a necessary condition. Therefore, to detect fundamental differences in

locomotion, animals of different sizes should be compared at equal Froude number, so that they can be as close to dynamic similarity as

possible. More generally, the concept of dynamic similarity provides a powerful framework within which similarities and differences in

locomotion can be interpreted.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The ‘dynamic similarity hypothesis’ (Alexander, 1976;
Alexander and Jayes, 1983) is one of the most general
theories of terrestrial locomotion. It proposes that animals
of different sizes use the same patterns of locomotion
when travelling at speeds corresponding to equal values of
the ‘Froude number’ (u2/glleg, where u is forward speed,
g is gravitational acceleration and lleg is leg length). So,
while a horse and a small dog are expected to move
in a very different manner when travelling at the same

absolute speed, the dynamic similarity hypothesis predicts
that, when travelling at the same Froude number, they
will use, for example, the same sequence and relative
timing of footfalls, the same ground reaction force relative
to body weight, the same stride length relative to leg
length and the same duty factor (stance time divided by
stride time).
Empirical evidence indicates that the dynamic similarity

hypothesis provides good predictions of basic locomotor
parameters across a wide range of species of different sizes,
particularly within groups of animals that are anatomically
similar (Alexander, 1976; Alexander and Jayes, 1983;
Blickhan and Full, 1993; Bullimore and Burn, 2006a;
Farley et al., 1993). It has proven to be a powerful tool in
locomotion research and has been widely used for
comparing humans, animals and robots of different sizes,
for separating the effects of size from the influence of other
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factors and for predicting speeds of locomotion in extinct
species and on other planets (reviewed by Vaughan and
O’Malley, 2005).

However, Donelan and Kram (1997, 2000) demonstrated
that equality of the Froude number does not guarantee
dynamic similarity in either walking or running. They
studied humans moving at equal Froude numbers, but at
different combinations of speed and simulated reduced
gravity, and found large deviations from dynamic similar-
ity. Because the same subjects were used in each gravity
condition, these deviations could not be explained by
anatomical differences. This raises a number of important
questions: Should the Froude number be used to define
equivalent speeds for animals of different sizes? Is it valid
to make predictions by assuming that locomotion will be
dynamically similar at equal Froude number? Why does
the Froude number predict dynamic similarity in Earth
gravity, but not in simulated reduced gravity? Alexander
(1989) argued that the Strouhal number, in addition to the
Froude number, must be equal for dynamic similarity in
running, but are these two criteria sufficient to guarantee
dynamic similarity? Here we identify the criteria that must
be met to ensure that bouncing gaits, such as trotting,
hopping and bipedal running, will be dynamically similar.
This provides a theoretical basis for predicting when the
dynamic similarity hypothesis is likely to be correct, and
therefore allows us to address the above questions.

The concept of dynamic similarity is much more general
than the dynamic similarity hypothesis of Alexander and
Jayes, and is widely used in engineering and physics. It is an
extension of the more familiar concept of geometric
similarity. Two geometrically similar objects are the same
shape—i.e. one could be made identical to the other by
multiplying all linear dimensions by a constant scale factor.
For example, two equilateral triangles of any size are
geometrically similar, while an equilateral and an isosceles
triangle are not. Completely dynamically similar systems
are geometrically similar and are also similar in terms of
force and time. Therefore, if two systems are moving in a
completely dynamically similar manner, the motion of one
can be made identical to the motion of the other by
multiplying all lengths by one scale factor, all forces by a
another scale factor and all time periods by a third scale
factor (Duncan, 1953).

It is often convenient to define dynamic similarity in
terms of dimensionless parameters (DPs), rather than scale
factors. A DP is a combination of parameters in which the
units of measurement cancel out. Examples relevant to
animal locomotion include stride length divided by leg
length (‘relative stride length’) and the Froude number. A
direct consequence of the scale factor definition of dynamic
similarity given above is that completely dynamically
similar systems have equal values of any DP that can be
formed from mechanical parameters (the reasoning behind
this is given in Appendix A). However, like complete
geometric similarity, complete dynamic similarity is a
theoretical idealisation. For practical purposes, dynamic

similarity is usually defined in terms of equality of a small
number of DPs that describe the aspects of the system that
are of interest. The DPs that have been used to assess
whether locomotion is dynamically similar include: duty
factor, relative stride length, relative peak force (the ratio
of peak vertical ground reaction force to body weight),
dimensionless leg stiffness and the phase relationships of
the limbs (Alexander and Jayes, 1983; Blickhan and Full,
1993; Donelan and Kram, 2000; Farley et al., 1993).
Although these represent only a small subset of the DPs
that could be used, they provide a good description of the
overall dynamics of locomotion and incorporate lengths,
forces and times, the three types of measurement that
comprise the definition of dynamic similarity.
Criteria for dynamic similarity can be obtained using the

method of ‘dimensional analysis’ (Isaacson and Isaacson,
1975). This is the approach that we employ here and is
described in detail in the next section. Before we could use
dimensional analysis, we first needed to identify the
parameters that are important in governing the dynamics
of locomotion. This is problematic for a complex system,
such as a moving animal, because an infinite number of
parameters could potentially be used to describe the
system. We solved this problem by utilising a mathematical
model—a simplified representation of locomotion with
only a few parameters. In general, if a model provides good
predictions of the aspects of a system that are of interest,
then dimensional analysis of its parameters can be used to
obtain criteria for dynamic similarity.
The model that we used was the planar spring–mass

model (Blickhan, 1989a; McMahon and Cheng, 1990). This
model consists of a point mass bouncing on a massless,
linear spring (Fig. 1). The mass represents the position of
the centre of mass of the animal and the spring represents
the combined effect of all limbs in contact with the ground
at one time. This ‘spring–mass system’ alternates between
ground contact phases, during which it rotates forwards
about a single point of contact, and aerial phases, during
which it moves ballistically. Because the model has only
seven parameters and provides good predictions of basic
locomotor dynamics (Blickhan, 1989a; Bullimore and
Burn, 2007; Farley et al., 1993; He et al., 1991), it is
suitable for defining criteria for dynamic similarity.
Blickhan (1989b) and Blickhan and Full (1993) used a

dimensionless formulation of the parameters of the
spring–mass model to define criteria for dynamic similarity
and to compare different gaits and animals of different
sizes. However, they did not formally determine the
number of criteria required to predict dynamic similarity
and their results have not been applied to resolving the
issue of why the Froude number is able to predict dynamic
similarity only under some circumstances. Here we build
upon their work by: (i) using Buckingham’s Pi-Theorem to
demonstrate that equality of four DPs is required to ensure
dynamic similarity in the spring–mass model; (ii) showing
that this can be reduced to three DPs by applying the
constraint of maintaining a constant average speed of

ARTICLE IN PRESS
S.R. Bullimore, J.M. Donelan / Journal of Theoretical Biology 250 (2008) 339–348340



Author's personal copy

locomotion; (iii) using sensitivity analysis to assess the
relative importance of each of the DPs for predicting
dynamic similarity across a physiologically relevant para-
meter space, and (iv) demonstrating why humans do not
move in a dynamically similar manner when running at
equal Froude number in different levels of simulated
reduced gravity, using the data of Donelan and Kram
(2000). The paper is divided into three sections. The first
section describes dimensional analysis of the planar
spring–mass model and the use of Buckingham’s Pi-
Theorem to determine the minimum number of criteria
required to predict dynamic similarity. The second section
presents the methods and results of the sensitivity analysis.
The third section presents the reanalysis of the simulated
reduced gravity data of Donelan and Kram (2000).

2. Dimensional analysis

The method of dimensional analysis, and the principles
behind it, are explained in detail by Isaacson and Isaacson
(1975) and, with reference to applications in biology, by
McMahon and Bonner (1983). Dimensional analysis can
be used to obtain criteria for dynamic similarity by the
following process: (i) identify appropriate parameters to
use in the analysis; (ii) use Buckingham’s Pi-Theorem to
determine how many DPs should be formed from these
parameters; (iii) derive an appropriate set of DPs. If two

systems have equal values of these DPs, then they will be
dynamically similar (assuming a good choice of parameters
was made in step (i)). The reason that these DPs constitute
criteria for dynamic similarity is explained in Appendix B.
The planar spring–mass model has seven parameters

(Fig. 1): mass (m), spring stiffness (k), spring natural length
(l0), the magnitude of the acceleration due to gravity (g),
vertical landing speed (v0), horizontal landing speed (u0)
and the landing angle of the spring relative to the vertical
(y0). Buckingham’s Pi-Theorem tells us that a system with n

parameters, that can be defined using r reference dimen-
sions, can be described using n�r DPs. A ‘reference
dimension’ is a physical quantity that can be used to
define other physical quantities. For example, velocity can
be defined in terms of the reference dimensions length and
time. All the parameters of the spring–mass model can be
defined in terms of three reference dimensions: force, length
and time (Table 1). Because we have seven parameters, and
three reference dimensions, Buckingham’s Pi-Theorem tells
us that we need to form four DPs. These DPs must be
independent, meaning that none of them can be formed by
combining the others.
There are various ways in which the model parameters

could be combined into four DPs. We use the DPs of
McMahon and Cheng (1990), but an alternative formula-
tion was used by Blickhan (1989a, b) and Blickhan and
Full (1993). The DPs we use are: dimensionless spring
stiffness (K), dimensionless horizontal landing speed (U0),
dimensionless vertical landing speed (V0) and the angle of
the spring at landing (y0). These DPs are defined in Table 2.
Although U0 and V0 are also Froude numbers, for the sake
of clarity and consistency we reserved the term ‘Froude
number’ for the Froude number used by Alexander and
Jayes (1983). This Froude number is approximately equal
to U0 squared, but uses average forward speed, instead of
horizontal landing speed, which is slightly higher than
average speed.
From Table 1 it can be seen that these DPs are

dimensionless, i.e. the units of measurement cancel out. It
can also be seen that they are independent because each of
them contains at least one-dimensional parameter that is

ARTICLE IN PRESS

5

2

3
4

1

0

g v0

u0

l0

m

k

Fig. 1. Top: planar spring–mass model representing trotting, bipedal

running and hopping. The point mass corresponds to the centre of mass of

the animal and the massless, linearly elastic spring extends between the

centre of mass and the centre of pressure and represents the action of all

limbs that are in contact with the ground at one time. Bottom:

spring–mass system modelling one complete step of locomotion. m is

mass and k is spring stiffness. The system lands at an angle, y0, to the

vertical, with the spring at its natural length, l0 (1 and 5). The horizontal

speed of the mass at landing is u0 and the vertical speed is v0. The system

rotates forwards throughout the stance phase, compressing until

midstance (2) and then extending to return to its initial length at takeoff

(3). During the aerial phase (4), the mass moves ballistically and its vertical

acceleration is equal to gravitational acceleration, with magnitude g. The

system lands with the same initial conditions at the start of the next

step (5).

Table 1

Dimensions of the parameters of the planar spring–mass model in terms of

the reference dimensions: force (F), length (L) and time (T)a

Parameter Dimensions

Mass (m) FL�1T2

Spring stiffness (k) FL�1

Spring natural length (l0) L

Acceleration due to gravity (g) LT�2

Vertical landing speed (v0) LT�1

Horizontal landing speed (u0) LT�1

Landing angle (y0) Dimensionless

aAlternatively mass, length and time could have been used as reference

dimensions. This would not have altered our conclusions. We chose to use

force, length and time for consistency with Alexander and Jayes (1983).

S.R. Bullimore, J.M. Donelan / Journal of Theoretical Biology 250 (2008) 339–348 341
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not present in any of the others. One advantage of this
choice of DPs is that it separates the properties of the
system (K) from the initial conditions with which it is
loaded (U0, V0, y0). Spring–mass models with equal values
of these DPs will be completely dynamically similar.
Animals that are performing gaits that can be modelled
by the spring–mass model, and that have equal values of
these DPs, will approach dynamic similarity in all aspects
of locomotion that are well-predicted by this model.

In order to model locomotion at a constant average
speed, a spring–mass model has to bounce symmetrically,
with landing and takeoff angles of equal magnitude. If it
does not do this, then it cannot generate equal braking and
propulsive impulses and so cannot maintain constant
speed. To achieve this symmetry in a model simulation,
the values of three of the DPs are selected, and then the
value of the fourth DP is varied until a symmetrical bounce
is obtained (Blickhan, 1989a; McMahon and Cheng, 1990).
Applying this constraint therefore means that one of the
DPs is no longer independent of the others, and allows us
to reduce the number of DPs required for predicting
dynamic similarity in constant speed locomotion to three.
Any three of the four DPs can be used (although, in
practice, allowing V0 to vary does not work well because
the y0 required for a given combination of K and U0 is
insensitive to the value of V0). In the next section, we
prescribe K, U0 and V0 and vary y0 to obtain a symmetrical
bounce. We chose to do this because it has been found that
animals tend to keep K and V0 constant and to vary y0 as
they change speed (Farley et al., 1993; He et al., 1991).

3. Sensitivity analysis

In the previous section, we identified four DPs that must
be equal for bouncing gaits to be dynamically similar. It is
also essential to know the relative importance of these DPs
as criteria for dynamic similarity. For example, if one DP is
10 times less influential than the others under physiological
conditions, then it would be reasonable to ignore it in most
situations. Alternatively, if one DP is twice as influential as
the others, smaller differences in this DP would be
sufficient to cause detectable differences in locomotion.
We address this issue by using sensitivity analysis to

determine the extent to which differences in K, U0 and V0

(the ‘input DPs’) affect the values of duty factor, relative
stride length and relative peak force (the ‘output DPs’)
predicted by the planar spring–mass model. We chose these
output DPs because they are often used to assess whether
locomotion is dynamically similar.

3.1. Methods

Thirty different values of each input DP were used,
giving 27,000 combinations of input DPs. Each input DP
was increased from its initial value in 29 increments of 5%.
We conducted the analysis over a parameter space
corresponding approximately to the ranges of the input
DPs that have been reported in the literature. Values of K

between 7.1 and 27.2 have been reported by Blickhan and
Full (1993), while a K of approximately 45 was used by
humans running in simulated reduced gravity (calculated
from He et al., 1991). The walk–trot transition typically
occurs at a Froude number of about 0.6 (Alexander and
Jayes, 1983), corresponding to a U0 of 0.77, and the
walk–run transition in humans in normal and simulated
reduced gravity occurs at a Froude number of approxi-
mately 0.5 (Kram et al., 1997), corresponding to a U0 of
0.71. A human running 100m in 10 s has a U0 of about
3.16. Blickhan (1989b) reported values for b, the angle of
the velocity vector to the horizontal at landing, of
6.6670.71 (SE) for runners and 15.9771.71 for hoppers.
We varied K between 10 and 41.2, U0 between 0.7 and 2.88
and V0 between 0.1 and 0.412 (giving b between 2.01 and
30.51). Because the highest value of each input DP was
always equal to the initial value multiplied by (1.05)29, we
had to use ranges of K and U0 that were slightly smaller
than the ranges reported in the literature in order to avoid
using highly nonphysiological values of b.
For each combination of input DPs, a spring–mass

model solution was obtained by integrating the dimension-
less equations of motion (McMahon and Cheng, 1990)
between the times of landing and takeoff (defined as when
the spring returned to its natural length) using a
Runge–Kutta algorithm (‘ode45’, Matlab version 6.5,
The MathWorks, Inc., MA, USA). A value for y0 that
gave a symmetrical bounce was obtained using an
optimisation algorithm based on a golden section search
and parabolic interpolation (‘fminbnd’, Matlab) to search
for solutions between 0 and 1.2 rad that corresponded to a
minimum in the difference between the magnitudes of the
landing and takeoff angles. The maximum step size for the
integrations was set to 0.01 s. Reducing the step size further
had no effect on the first six decimal places of the
calculated output DPs in several test simulations. Values
of y0 that gave a symmetrical bounce were found for all
27,000 combinations of input DPs. The required angles
varied between 0.18 and 0.86 rad and gave takeoff angles
that were always within 10�5 rad of landing angle.
Dimensionless aerial time (TA) was calculated as 2V0 and

dimensionless distance travelled during the aerial phase

ARTICLE IN PRESS

Table 2

Dimensionless parameters that were used as criteria for dynamic similarity

in the planar spring–mass model

Name Symbol Equationa

Dimensionless spring stiffness K kl0/mg

Dimensionless horizontal landing speed U0 u0=
ffiffiffiffiffiffi
gl0

p
Dimensionless vertical landing speed V0 v0=

ffiffiffiffiffiffi
gl0

p
Landing angle y0 y0

aDimensional parameters: k ¼ spring stiffness, l0 ¼ spring natural

length, m ¼ mass, g ¼ acceleration due to gravity, v0 ¼ vertical landing

speed, and u0 ¼ horizontal landing speed.

S.R. Bullimore, J.M. Donelan / Journal of Theoretical Biology 250 (2008) 339–348342
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(LA) was calculated as 2V0U0 (Appendix C). The output
DPs were calculated as:

duty factor ¼ TC=2ðTC þ TAÞ,

relative stride length ¼ 2ðLA þ LCÞ,

relative peak force ¼ KDL,

where TC, LC and DL are the dimensionless contact time,
horizontal distance travelled during ground contact and
peak spring compression, respectively.

The sensitivity of output DP A to input DP X at the
values of the input DPs Xi, Yj, Zk was calculated as follows:

sensitivity of A to X ¼
AðX iþ1;Y j ;ZkÞ � AðX i;Y j ;ZkÞ

0:05 � AðX i;Y j ;ZkÞ

����
����,

i.e. sensitivity was the absolute value of the ratio of the
proportional change in the output DP to the proportional
change in the input DP. The proportional change in
input DP was always 0.05 because the input DPs were
increased in 5% increments. A sensitivity of 1.0 indicates
that a 5% change in the input DP caused a 5% change in
the output DP.

3.2. Results

Over the parameter space used, duty factor varied
between 0.14 and 0.43, relative stride length varied between
1.09 and 7.79 and relative peak force varied between 1.92
and 5.82. All sensitivity values were less than 1.0 (Fig. 2),
indicating that the proportional change in the output DP
was always less than the proportional change in the input
DP. Sensitivity varied substantially across the parameter
space, with the sensitivity of relative stride length to V0

having the greatest range (0.11–0.77).

Comparison of the sensitivity of the output DPs to each
of the input DPs was used to assess the relative importance
of each of the input DPs as criteria for dynamic
similarity—i.e. if the output DPs were less sensitive to
one of the input DPs than to the others, that input DP was
considered less important as a criterion for dynamic
similarity. The relative importance of the input DPs varied
substantially across the parameter space. Examples of the
sensitivity of relative stride length to each of the three input
DPs are shown in Table 3 for points in the parameter space
representative of different modes of locomotion. This
shows that, for a human running at 3m/s in normal
gravity, relative stride length is twice as sensitive to U0 as to
K or V0. Running at a simulated reduced gravity level of
20% of normal gravity or sprinting at 8.1m/s takes the
runner to a point in the parameter space where relative
stride length is approximately four times as sensitive to U0

and V0 as to K. In these latter situations, K could vary four
times as much as the other DPs before a measurable
difference in relative stride length would be observed.
In general, the output DPs were less sensitive to K than

to U0 or V0, indicating that equality of K was usually the
least important of the three criteria. Duty factor was least
sensitive to K over 74% of the parameter space, relative
stride length was least sensitive to K over 80% of the
parameter space and relative peak force was least sensitive
to K over 69% of the parameter space. On average, duty
factor and relative peak force were most sensitive to V0 and
relative stride length was most sensitive to U0. Over more
than 99.8% of the parameter space, however, sensitivity to
each of the input DPs was within the same order of
magnitude (i.e. the ratios of the sensitivities were between
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Fig. 2. Sensitivity of duty factor (DF), relative stride length (RSL) and

relative peak force (RPF) to changes in the three ‘input’ DPs (K, U0 and

V0). Each boxplot describes the distribution of sensitivity values over a

physiologically relevant parameter space. Boxes indicate interquartile

range, the central bar indicates median, and the whiskers indicate range.

All sensitivity values were less than 1.0 indicating that the output DP

always changed proportionally less than the input DP.

Table 3

Sensitivity of relative stride length to K, U0 and V0 at combinations of

input DPs representative of running, trotting and hopping

Sensitivity to

K U0 V0

Human running at 3m/s in 1ga

(K ¼ 14.8, U0 ¼ 0.98, V0 ¼ 0.23) 0.29 0.68 0.35

Human running at 3m/s in 0.2ga

(K ¼ 39.2, U0 ¼ 2.15, V0 ¼ 0.25) 0.16 0.76 0.65

Human running at 8.1m/s in 1gb

(K ¼ 27.9, U0 ¼ 2.49, V0 ¼ 0.25) 0.16 0.73 0.65

Dog trotting at 2.8m/s in 1gc

(K ¼ 12.8, U0 ¼ 1.26, V0 ¼ 0.15) 0.32 0.53 0.30

Kangaroo hopping at 3.8m/s in 1gc,d

(K=10.0, U0=1.60, V0=0.39) 0.20 0.72 0.54

g=Earth gravity.

Input DPs based on:
aHe et al. (1991).
bMorin et al. (2006).
cFarley et al. (1993).
dBlickhan (1989b).

S.R. Bullimore, J.M. Donelan / Journal of Theoretical Biology 250 (2008) 339–348 343
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0.1 and 10), indicating that none of the input DPs can be
neglected as criteria for dynamic similarity.

Relative stride length was typically the most sensitive of
the output DPs. It was the most sensitive to K over 71% of
the parameter space, the most sensitive to U0 over 100%
of the parameter space and the most sensitive to V0 over
73% of the parameter space.

4. Simulated reduced gravity data

Our aim in this section was to determine why humans do
not move in a dynamically similar manner when travelling
at equal Froude number under different levels of simulated
reduced gravity. The spring–mass model is a good model of
running in simulated reduced gravity as well as in normal
gravity (Bullimore and Burn, 2007), so the dynamic
similarity criteria derived above also apply here. According
to these criteria, deviations from dynamic similarity must
be due to differences in one or more of K, U0 or V0. Here
we are considering comparisons made at equal Froude
number (and therefore equal U0), so K and/or V0 must be
different.

To determine how K and V0 varied with gravity level, we
reanalysed the data collected by Donelan and Kram (2000).
They used 10 human subjects who ran on a force-
measuring treadmill while reduced gravity was simulated
by applying a constant upward force to the torso via a
modified rock-climbing harness. Here, we use a subset of
their data in which the subjects ran at four different Froude
numbers and four different simulated gravity levels, to give
a total of 160 trials. We calculated mean values of K and V0

for each trial and used regression analysis to determine
the relationships of K and V0 to gravity level at each
Froude number. We considered pp0.05 to be statistically
significant.

K decreased significantly as gravity increased so that, at
1.0g (where g indicates Earth gravity), K was about 50% of
the value at 0.25g (Fig. 3). Unfortunately, it was not

possible to draw a definite conclusion as to whether V0

changed with gravity level. The data obtained from the
force treadmill were noisier than the data typically
obtained using force plates embedded in the ground and
this made it difficult to detect the precise moment of
ground contact. Because vertical velocity is changing
rapidly at the time of ground contact, this had a large
influence on the calculated landing velocity. We found that
different methods of detecting ground contact led to
different conclusions. When ground contact was detected
by taking the time of the last minimum occurring in
the force trace before peak force, V0 did not change
significantly with gravity level. When ground contact was
detected by linear extrapolation of the lower part of the
force trace to zero force, V0 increased significantly with
gravity level, except at a Froude number of 0.5 where the
increase was not significant (p ¼ 0.09). Therefore, we
conclude that the deviations from dynamic similarity at
equal Froude number in simulated reduced gravity are due
to changes in K with gravity level, and that further work
would be needed to determine whether they are also due to
changes in V0.

5. Discussion

5.1. Criteria for dynamic similarity in bouncing gaits

We have shown that four DPs must be equal to ensure
dynamic similarity in trotting, hopping and bipedal
running and that this can be reduced to three DPs by
applying the constraint of maintaining a constant average
speed of locomotion. Several choices of these three DPs are
possible and these need not necessarily include a Froude
number. However, if the chosen DPs are independent,
equality of those DPs will result in equality of the Froude
number. Therefore, equal Froude number is a necessary,
but not sufficient, condition for dynamic similarity in
bouncing gaits.
The analysis presented here applies only to bouncing

gaits, so our conclusions cannot be applied directly to
walking. However, limb compression also has a significant
influence on the mechanics of walking (Alexander, 1992;
Lee and Farley, 1998) so a dimensional analysis of the
parameters that govern walking dynamics would have to
include a parameter which describes limb compression and
would therefore yield at least one DP in addition to the
Froude number. Furthermore, minimising metabolic cost
in walking depends upon the active swinging of the legs,
suggesting that a dimensionless hip stiffness may also be
required (Doke et al., 2005). Therefore, the Froude number
will also not be sufficient to predict dynamic similarity in
walking. Geyer et al. (2006) presented a bipedal spring–
mass model which is equivalent to the current model when
it is used to represent running, but is also able to model
walking. They described the model using three independent
DPs: (in our notation) K, angle of attack (p/2�y0) and
dimensionless system energy. Before this model could be
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Fig. 3. Relationship of dimensionless spring stiffness (K) to gravity level

(multiples of Earth gravity, g) for humans running in simulated reduced

gravity at four different Froude numbers (Fr).
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used to define criteria for dynamic similarity in walking it
would be necessary to establish that: (a) there is a unique
solution to the model for any given set of values of the
three DPs, at least within the physiological range; (b) the
model is able to provide good predictions of experimentally
measured walking dynamics. If these conditions were
satisfied then these three DPs could be used as criteria
for dynamic similarity in both walking and running.

The fact that the Froude number is successful in
predicting dynamic similarity in animals of different sizes
moving in Earth gravity implies that both K and V0 are
independent of body mass. This is supported by the
following analysis of the results of Farley et al. (1993) who
used the spring–mass model to describe quadrupeds of a
wide range of different sizes trotting at approximately
equal Froude number. They found that k was proportional
to m0.67 (where m is body mass) and l0 was proportional to
m0.34. Although they did not calculate it, this equates to K

proportional to m0.01 (kl0/mgpm0.67m0.34/m1m0
¼ m0.01).

Stance time was proportional to m0.19 and duty factor was
independent of size, so aerial time would also have been
proportional to m0.19. Approximating v0 as proportional to
aerial time, which is exact only if the aerial phase is
symmetrical (Appendix C), yields V0 proportional to m0.02

ðv0=
ffiffiffiffiffiffi
gl0

p
/ m0:19=ðm0m0:34Þ

0:5
¼ m0:02Þ. Therefore, both K

and V0 were almost independent of size, explaining the
utility of the Froude number at Earth gravity. Blickhan
and Full (1993) also found K to be independent of size
when they estimated it for various species of animals using
scaling relationships from the literature. Conversely, we
have shown that the reason that the Froude number does
not predict dynamic similarity in simulated reduced gravity
is that K is not independent of gravity level (Fig. 3). For
(dimensionless) K to be independent of gravity level, the
properties of the leg would have to be adjusted such that
(dimensional) k in the model decreased in proportion to
gravity—i.e. k would have to be a quarter of its normal
value at 0.25g. Although k did decrease with gravity, it did
not change sufficiently to maintain dynamic similarity.

An important remaining question is why locomotion has
evolved to be dynamically similar in animals travelling at
equal Froude number; i.e. why K and V0 are independent
of size. This is particularly significant because size-
independence of K is not expected in geometrically similar
animals with the same musculoskeletal tissue properties
(Bullimore and Burn, 2004). One possible reason is that,
because the Froude number is a ratio of inertial to
gravitational forces, it provides an index of the mechanical
environment in which the animal is moving. It seems likely
that the optimal locomotor pattern for a given mechanical
environment is independent of animal size. Therefore,
dynamic similarity may be indicative of mechanical
optimisation, as proposed by Alexander and Jayes (1983)
and Alexander (1989).

An alternative approach to deriving criteria for dynamic
similarity is to use ratios of forces that are known to have a
significant influence on the system (Isaacson and Isaacson,

1975). The Froude number can be viewed as the ratio of
inertial to gravitational force and K is the ratio of
maximum spring force to body weight. Alexander (1989)
used this approach to argue that both the Froude number
and another dimensionless number, the Strouhal number,
must be equal for dynamic similarity in running. The
difficulty with this approach, however, is that it does not
tell us how many DPs are required and does not help us to
obtain DPs, such as y0, that are not ratios of forces. In fact,
spring–mass models with equal Froude and Strouhal
numbers (or equal U0 and K) can still move in manner
that is far from dynamically similar if they have different
values of V0 and y0 (Fig. 4). It should be noted, however,
that Alexander (1989) did not state that equal Froude and
Strouhal number are sufficient for dynamic similarity, only
that they are necessary.
The dimensional analysis described here used all the

parameters of the planar spring–mass model. Therefore,
spring–mass models with equal values of K, U0, V0 and y0
will be completely dynamically similar—i.e. they will have
equal values of any other DP that could be used to describe
them. However, the parameters of the spring–mass model
constitute only a small fraction of the parameters that
could be used to describe a moving animal. Therefore,
these four DPs are criteria for dynamic similarity only in
aspects of locomotion that are well predicted by the
spring–mass model. Aspects of locomotion that are not
well-predicted (such as horizontal forces, Bullimore and
Burn, 2006b, 2007), or are not predicted at all (such as joint
angles and tendon strains) could deviate substantially from
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Fig. 4. Equality of two DPs is not sufficient to guarantee dynamic

similarity. Ground reaction force (GRF) traces predicted by two spring–

mass simulations with equal values of K and U0. Simulation 1 (black line):

K ¼ 20, U0 ¼ 2.8, V0 ¼ 0.1. Simulation 2 (grey line): K ¼ 20, U0 ¼ 2.8,

V0 ¼ 0.3. For the spring–mass model, Strouhal number can be defined asffiffiffiffiffiffiffiffiffi
k=m

p
ðl0=u0Þ and Froude number as u20=gl0. Therefore, the two

simulations also have equal Strouhal and Froude numbers because

Strouhal number is
ffiffiffiffi
K
p

=U0 and Froude number is U0
2. GRF is shown

relative to body weight (mg) and time is shown relative to stride time so

that the differences in relative peak force and duty factor are apparent.

Relative stride length was 2.96 in simulation 1 and 5.52 in simulation 2.

The differences in duty factor, relative stride length and relative peak force

indicate that the two simulations are not dynamically similar.
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dynamic similarity. In fact, some parameters must deviate
from dynamic similarity in order to allow K to be equal in
animals of different sizes (Bullimore and Burn, 2004).
Therefore, K, U0, V0 and y0 can be seen as criteria for
‘partial dynamic similarity’ in bouncing gaits.

5.2. Sensitivity analysis

The sensitivity analysis showed that the relative im-
portance of K, U0 and V0 as criteria for dynamic similarity
varied greatly across the parameter space. This is
important to take into account in experimental studies.
Deviations from dynamic similarity will depend upon both
the magnitudes of differences in K, U0 and V0 and the
sensitivity to these differences. This could mean, for
example, that two animals appear dynamically similar at
one Froude number, but not at another. In general,
locomotion was least sensitive to K (sensitivity was always
o0.4), indicating that proportionally larger differences in
K could occur without observable deviations from dyna-
mically similar locomotion.

Relative stride length was typically the most sensitive of
the output DPs. This may explain why Alexander and
Jayes (1983) found greater differences in relative stride
length than in duty factor when comparing quadrupeds of
different sizes. This indicates that relative stride length is a
useful DP to measure in order to determine whether
deviations from dynamic similarity occur.

Over the parameter space that was used, sensitivity of
duty factor, relative stride length and relative peak force to
K, U0 and V0 was always less than 1—i.e. the model outputs
always changed proportionally less than the model inputs.
This low sensitivity may be advantageous in that it would
make locomotion more predictable and easier to control.
For example, a sudden change in ground surface properties
(which could be viewed as a change in K) would cause only
relatively small alterations in locomotor dynamics.

Sensitivity analysis was used here to assess the relative
importance of the DPs as criteria for dynamic similarity,
but it could also provide useful insight for answering other
questions about locomotion. In general, any study into
the effects of a perturbation on locomotion should be
conducted at speeds of locomotion where sensitivity is
high, so that the effects of the perturbation are maximised.
The variation in sensitivity over the parameter space raises
several interesting questions, such as: Do animals prefer-
entially use low sensitivity regions of the parameter space
when travelling over rough ground? Do gait transitions
occur in regions of high sensitivity? Do animals use
different control strategies in regions of high sensitivity?
Is manoeuvrability greater in regions of high sensitivity?

5.3. Role of the concept of dynamic similarity in locomotion

research

Empirically, it seems that the approach of comparing
dimensionless locomotor parameters in animals moving at

equal Froude number is often successful in removing the
effects of size, because K and V0 tend to be size-
independent. From a theoretical viewpoint, however, there
is no guarantee that locomotion will always be dynamically
similar at equal Froude number. Therefore, caution needs
to be exercised when using the concept of dynamic
similarity to account for the effects of size on locomotion
or to predict locomotor dynamics in extinct species. When
this approach is used to account for size differences in
experimental studies, post hoc analysis can be used to
determine whether it has been successful. For example, in a
study comparing adults and children, adults of a wide
range of different sizes should be included. If dimensionless
locomotor parameters are independent of size at equal
Froude number in the adult subjects, this indicates that the
approach has been successful in removing size effects and
that remaining differences between adults and children can
be attributed to other aspects of the maturation process.
If, as discussed above, dynamically similar locomotion

arises because the optimal mechanical solution is size-
independent, then dynamic similarity would not be
expected when comparing animals in environments for
which they are not adapted, such as simulated reduced
gravity. Deviations from dynamically similar locomotion
would also be expected to become greater as differences in
anatomy, selection pressures and lifestyle increase. For
example, a hopping kangaroo protracts its limbs during the
aerial phase, while a running biped protracts each limb
during the stance phase of the contralateral limb. There-
fore, it is unlikely that these two animals would have the
same optimal duty factor at the same Froude number.
Similarly an animal whose legs had a high moment of
inertia would be expected have a lower optimal stride
frequency than an animal with slender legs.
Dynamically similar locomotion also becomes less likely

as size differences increase, because the dynamic similarity
criteria become progressively less likely to be met. For
example, larger mammals have more upright limbs and
proportionally larger muscle moment arms (Biewener,
1989, 1990) and this plays an important role in maintaining
the size-independence of K (Bullimore and Burn, 2004).
However, there must be a limit to the size range over which
this can occur. For example, to maintain the scaling
measured by Biewener (1989), a 6000 kg Tyrannosaurus

would have to have muscle moment arms that were 2.7
times longer than its ground reaction force moment arms,
which seems unlikely. Therefore, it is probable that very
large extinct species had lower values of K than extant
species. If they ran in a manner that could be modelled by
the spring–mass model, speeds predicted from stride length
by assuming dynamic similarity with extant mammals are
likely to be substantially overestimated (Fig. 5).
The concept of dynamic similarity can play another

role in locomotion research, which does not rely upon
whether or not locomotion is dynamically similar at equal
Froude number. It provides a theoretical framework within
which similarities and differences in locomotion can be
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interpreted. Once criteria for dynamic similarity within a
certain gait have been identified, deviations from dynami-
cally similar locomotion can be understood in terms of
which of these criteria are not being met (e.g. see Blickhan,
1989b). For example, in a study of how locomotor
dynamics change during growth, animals of different ages,
and therefore sizes, could be compared at equal Froude
number so that dynamically similar locomotion is possible.
Locomotion could be characterised using dimensionless
locomotor parameters such as relative stride length and
duty factor. If these parameters are found to change
systematically during growth, K and V0 could be calculated
to determine whether these changes are due to differences
in one or both of these DPs. The sensitivity of locomotion
to K and V0 under the relevant conditions would also need
to be taken into account. Changes in K could be explained
in terms of changes in anatomy and muscle and tendon
properties during growth, as well as the direct effects of
size. Changes in V0 reflect differences in the dimensionless
aerial times selected by the animals (Appendix C). This
type of approach facilitates a mechanistic, rather than
descriptive, interpretation of the influence of factors such
as size, growth, gravity level and anatomy on locomotion.
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Appendix A. Why does dynamic similarity imply equal DPs?

By definition, two systems that are completely dynamically
similar can be made mechanically identical by taking one of
the systems and multiplying all linear dimensions by a length
scale factor (cL), all internal and external forces by a force
scale factor (cF) and all time periods by a time scale factor
(cT). Length, force and time can be considered as reference
dimensions, so all other mechanical parameters can be
defined in terms of them. Therefore, the scale factors for
other mechanical parameters can be determined from cL, cF

and cT. For example, by Newton’s second law, mass is force
divided by acceleration, so its scale factor must be cFcT

2cL
�1.

Dynamic similarity, reference dimensions and the use of scale
factors are discussed in Isaacson and Isaacson (1975).
A DP is a set of parameters combined in such a way that

the units of measurement cancel out. Two dynamically
similar systems will have equal values of any DP formed
from mechanical parameters because the scale factors will
also cancel out. This can be demonstrated using a simple
example. If an animal with leg length Lleg is moving with a
stride length Lstride its relative stride length is Lstride/Lleg. If
a second animal has leg length, cLLleg and is moving in a
manner that is dynamically similar to the first animal, its
stride length must be cLLstride so that its relative stride
length is cLLstride/cLLleg, which is equal to the relative stride
length of the first animal. A similar argument could be
applied to any other DP. Therefore, completely dynami-
cally similar systems have equal values of all DPs formed
from mechanical parameters.

Appendix B. Why can dimensional analysis be used to define

criteria for dynamic similarity?

We have stated that, if spring–mass models have equal
values of K, U0, V0 and y0, then they will be completely
dynamically similar—i.e. they will have equal values of any
other DP that could be used to describe them. Here we
demonstrate why.
The spring–mass model has seven parameters: k, m, l0, g,

u0, v0, y0. Here we consider an arbitrary eighth dimensional
parameter, pout, that describes the behaviour of the system in
some way. This could be stride length, stance time, peak
vertical GRF etc. We know that some function, f, relates this
parameter to the other parameters, but we do not know what
it is (because the equations of motion for the model cannot
be solved analytically). This can be expressed as:

pout ¼ f ðk;m; l0; g; u0; v0; y0Þ.

Buckingham’s Pi-Theorem tells us that the above equation
can be reduced to a relationship among 8�3 ¼ 5 indepen-
dent DPs (Isaacson and Isaacson, 1975). One option is to use
K, U0, V0, y0 and a fifth DP, Pout, which contains pout and
some combination of the other dimensional parameters.
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Fig. 5. Many different combinations of K, U0 and V0 can give the same

relative stride length in the spring–mass model. Each line shows

combinations of K and U0 that give a relative stride length of 2.5 for a

given value of V0. V0 increases from 0.10 to 0.41 in the direction of

decreasing U0. If K were lower than required for dynamic similarity, speed

(i.e. U0) predicted from relative stride length would be overestimated.

Note that, although relative stride length was constant, duty factor and

relative peak force were not the same in the different simulations, so

locomotion would not appear dynamically similar. This emphasises the

importance of measuring more than one DP to assess whether locomotion

is dynamically similar.
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For example, if pout is stance time (tc),Pout could be tc

ffiffiffiffiffiffiffiffiffi
g=l0

p
.

The relationship between these five DPs can then be
expressed as:

Pout ¼ jðK ;U0;V0; y0Þ.

Again, we do not know what the function j is, but we can
see that, if two systems have equal values of K, U0, V0 and y0,
then they must have equal values ofPout. Because pout was an
arbitrary parameter, this applies to any DP that could be
formed by combining a parameter with some of the seven
model parameters (e.g. relative stride length, relative peak
force). It also applies to any other DPs that can be created by
combining such DPs. For example, if two systems have equal
values of the DPs tc

ffiffiffiffiffiffiffiffiffi
g=l0

p
and ts

ffiffiffiffiffiffiffiffiffi
g=l0

p
, where ts is stride

time, they must have equal values of tc/ts, i.e. duty factor.

Appendix C. Modelling the aerial phase

If x is the vertical displacement of the centre of mass
relative to its position at the start of the aerial phase, and is
positive in the upward direction, then the motion of the
centre of mass in the vertical direction during the aerial
phase can be described as follows:

€x ¼ �g,

_x ¼ �gtþ vT ,

where t is time and vT is the vertical speed of the centre of
mass at the start of the aerial phase. At the end of the aerial
phase, when t is equal to aerial time (ta):

_x ¼ �v0 ¼ �gta þ vT ) ta ¼
vT þ v0

g
.

If the aerial phase is symmetrical, as in our spring–mass
model simulations, then vT ¼ v0, so that ta ¼ 2v0/g and is
therefore proportional to v0.

Dimensionless aerial time (TA) can be defined as
ta

ffiffiffiffiffiffiffiffiffi
g=l0

p
. Substituting for ta gives:

TA ¼
2v0

g

ffiffiffiffi
g

l0

r
¼

2v0ffiffiffiffiffiffi
gl0

p ¼ 2V0.

Dimensionless distance travelled during the aerial phase
(LA) can be defined as la/l0 where la is the dimensional
distance travelled and is equal to tau0. This gives:

LA ¼
tau0

l0
¼

2v0u0

gl0
¼ 2V0U0.
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