Welcome to the Department of Mathematics

What's Happening This Week In Mathematics....


Event: 56th annual meeting of the Canadian Operational Research Society (CORS) in Ottawa.

As in the past two years, we encouraged the undergraduates in Math 402W Operations Research Clinic to submit their projects to the CORS undergraduate student paper competition.  And, once again, they won both prizes.  This year, all 3 projects submitted were chosen as finalists, and presented their work at the meeting. (The fourth finalist was from the University of Alberta; nine entries were received.)  Congratulations go to:

Kishley Bhalla, Craig Mathews, W. Brett Robinson and Katie Sclater "Selecting Optimal Tolling Levels: A Case Study for the Fraser River in the Greater Vancouver Area"

Honourable Mention:
Nicole Mo, Alborz Namazi, Joyce Tai and Eric Yuen "Optimal Locations of Telecommunication Equipment: A Case Study for the City of Richmond, British Columbia, Canada"

Kingsley Cheang, Feiqi He, Sarah Lin and Ashlie Neufelt "The Community Mailbox Location-Routing Problem"

Additionally, Second Prize in the CORS Practice Competition went to Daniel Karapetyan (SFU Math postdoc 2011-13) and Abraham Punnen, for their paper "Operational Research Models and Algorithms for Fleet Size Planning and Schedule Optimisation for the British Columbia Ferry Services Inc."  Finalists for the practice competition included teams from the University of Toronto and IBM, first prize went to UOIT.

Daily News

Upcoming Events

  • Number Theory Seminar- Avi Kulkarni (SFU)
    3:30 PM - 4:30 PM
    October 23, 2014
    Thursday , October 23, 3:30pm Room: Irmacs K 10900 Number Theory Seminar Speaker: Avi Kulkarni (SFU) Title: On Jacobians of dimension 2g that decompose into Jacobians of dimension g. Abstract: Let X be a genus 2g curve defined over an arbitrary field of characteristic not equal to 2 and let J(X) the Jacobian variety of X. We say that a Jacobian variety is decomposable if it is isogenous to a product of abelian varieties. The type of decomposition can by characterized by the type of kernel of the isogeny and the dimensions of the varieties in the product. We consider isogenies with kernel type (Z/2Z)^g and products of dimension g Jacobian varieties. Additionally, we insist that the isogeny is polarized. In this talk we describe a family of (non-hyperelliptic) genus 2g curves whose Jacobians are decomposable in this way. We prove that all genus 4 curves whose Jacobian has this decomposition type are either in this family or arise from a different construction considered by Legendre. Joint work with Nils Bruin.
  • Lee Safranek, M.Sc. Thesis Defence, Mathematics Room: IRMACS 10908
    1:30 PM - 3:30 PM
    November 19, 2014
    (Sr. Supervisor: Nilima Nigam) Title: Analysis of an Age-Structured Model of Chemotherapy-Induced Neutropenia Abstract: Neutropenia is a blood disorder characterized by low levels of neutrophils and is a common side effect of chemotherapy. Administration of granulocyte-colony stimulating factor (G-CSF) is a typical treatment that helps stabilize the level of neutrophils. However, it is not known if changes to the frequency and dosage of administered G-CSF will lead to better treatment. We analyze a nonlinear hyperbolic system of coupled integro-differential equations aimed at quantifying the effect of treatment plans on patients with chemotherapy-induced neutropenia. We show how this age-structured model can be decoupled for short time. We then investigate the equivalence of an integral equation with a related nonlinear PDE and prove existence and uniqueness of solutions of the integral equation. This is used to finally demonstrate existence and uniqueness of solutions to the full PDE system.
  • Nathan Sharp, M.Sc. Thesis Defence, Mathematics Room: IRMACS 10940
    2:30 PM - 4:30 PM
    November 24, 2014
    (Sr. Supervisor: Manfred Trummer) Title: Barycentric Rational Interpolation and Spectral Methods Abstract: Spectral methods typically give excellent accuracy with relatively few points (small N), but certain numerical issues arise with larger N. This thesis focuses on spectral collocation methods, also known as pseudo-spectral methods, that rely on interpolation at collocation points. A relatively new class of interpolants will be considered, namely the Floater-Hormann family of rational interpolants. These interpolants and their properties will be studied, including their use in differentiation by means of differentiation matrices based on rational interpolants in the barycentric form. Then, consideration will be given to the solution of singularly perturbed boundary value problems though the use of boundary layer resolving coordinate transformations. Finally, coupled systems of singularly perturbed boundary value problems will be investigated, though only with the standard Chebyshev collocation method.
  • Download .ics