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Transcriptional regulation of Annexin A2 promotes
starvation-induced autophagy
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Autophagy is an important degradation pathway, which is induced after starvation, where it

buffers nutrient deprivation by recycling macromolecules in organisms from yeast to man.

While the classical pathway mediating this response is via mTOR inhibition, there are likely to

be additional pathways that support the process. Here, we identify Annexin A2 as an

autophagy modulator that regulates autophagosome formation by enabling appropriate

ATG9A trafficking from endosomes to autophagosomes via actin. This process is dependent

on the Annexin A2 effectors ARP2 and Spire1. Annexin A2 expression increases after

starvation in cells in an mTOR-independent fashion. This is mediated via Jun N-terminal

kinase activation of c-Jun, which, in turn, enhances the trans-activation of the Annexin A2

promoter. Annexin A2 knockdown abrogates starvation-induced autophagy, while its

overexpression induces autophagy. Hence, c-Jun-mediated transcriptional responses support

starvation-induced autophagy by regulating Annexin A2 expression levels.
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M
acroautophagy is a conserved catabolic pathway
in which cytosolic contents, such as damaged
organelles, misfolded proteins and bacteria, are trans-

ported into lysosomes for degradation1–3. Autophagy plays an
essential role in maintaining cellular homoeostasis, and
deregulation of autophagy has been associated with a wide
range of human conditions, including cancer, infection and
neurodegeneration1–3. Autophagy is induced after starvation in
organisms from yeast to man, where it buffers nutrient
deprivation by degrading macromolecules. For example, this
response is critical in the mammalian newborn period before the
establishment of breastfeeding, where it protects against
starvation4. The classical pathway regulating this process is
mediated via inhibition of the (mammalian) target of rapamycin
complex 1 (mTORC1), a kinase complex that acts on very
early stages of autophagosome biogenesis3. However, as
autophagosome formation likely requires membrane inputs
from multiple routes5–13, it is possible that the starvation
response needs to activate multiple nodes and may require the
integration of additional signals for its maintenance. Indeed,
autophagy is also regulated by transcription factors (for example,
TFEB, FOXO3A and TFE3)14–16. However, these transcription
factors appear to regulate a multitude of possible effector genes,
and it is not clear which of the putative targets are necessary or
sufficient to elicit the response. In some of these cases, there may
well be multiple relevant target genes.

The membranes required for autophagosome formation
seem to originate from multiple compartments, such as the
endoplasmic reticulum, Golgi, mitochondria, plasma membrane,
endoplasmic reticulum–Golgi intermediate compartment, and
early and recycling endosomes5–13. The dynamics and the
interactions that can occur between these compartments are
still mysterious. Therefore, there is an urgent need to understand
the trafficking of key autophagy proteins in greater detail. ATG9A
is a transmembrane autophagy-related (ATG) protein that is
thought to deliver membranes to the preautophagosome
structures and autophagosomes2,3. Downregulation of ATG9A
in yeast and mammalian cells inhibits autophagosome
formation17–23. In mammalian cells, ATG9A traffics between
Golgi, diverse endocytic vesicles and autophagosomes13,17,18,24.
Recently, we found that ATG9A was routed from the
plasma membrane to recycling endosomes via early endosomal
compartments and this trafficking is important for auto-
phagosome biogenesis11. While ATG9A traffics through the
secretory pathway, most of the localization previously reported to
be in the Golgi is probably due to its predominant localization
in recycling endosomes11, which cannot easily be distinguished
from the Golgi using static experiments11. Moreover, little is
known about how ATG9A is sorted between these different
compartments, which represents an important gap in the
understanding of autophagosome biogenesis and its regulation.
Here we show that actin is localized around ATG9A vesicles in
mammalian cells and this is important for ATG9A sorting from
endosomes. We identified three actin-nucleating factors, Annexin
A2, ARP2 and Spire1 as important players in ATG9A sorting.
Annexin A2 levels appear to be upregulated upon starvation in a
Jun N-terminal kinase(JNK)-c-Jun-dependent manner, and this
correlates with an increase in ATG9A vesicle movement and
autophagosome formation.

Results
Annexin A2 regulates autophagy. As part of ongoing efforts to
identify regulators of autophagy, we focussed on Annexin A2.
Annexin A2 is an actin-binding protein that modulates many
intracellular trafficking events via the regulation of actin poly-
merization25. Annexin A2 knockdown prevents endocytic

transport beyond early endosomes26, effects that are mimicked
by actin depolymerisation27. We tested if Annexin A2 was
involved in autophagy using western blots to measure LC3-II
levels. During autophagy, cytosolic LC3 is cleaved by ATG4 to
form LC3-I, which can be conjugated to phosphatidylethanolamine
to form LC3-II specifically on autophagosomal membranes28.
Therefore, the level of LC3-II positively correlates with the
number/volume of autophagosomes present inside the cell.
However, an accumulation of LC3-II levels by western blot can
either be the consequence of increased autophagosome formation,
or impaired autophagosome degradation29. To discriminate
between these two possibilities, the assay can be performed in
the presence of saturating concentrations of Bafilomycin A1
(BafA1), a potent inhibitor of the vacuolar Hþ ATPase that
inhibits the degradation of autophagosomes29,30. Annexin A2
knockdown, using different short interfering RNAs (siRNAs),
decreased LC3-II levels in the absence and in the presence
of BafA1 in basal or starvation conditions (Fig. 1a and
Supplementary Fig. 1a). Annexin A2 knockdown also decreased
the number of GFP-LC3 dots (autophagosomes) per cell
(Supplementary Fig. 1b), suggesting that Annexin A2 regulated
autophagosome formation. Annexin A2 overexpression stimulated
autophagy, as seen by an increase of LC3-II levels in the absence
and in the presence of BafA1 by western blot (Fig. 1a) and by an
increase of LC3 vesicles by immunofluorescence (Fig. 1b).
Moreover, the autophagosome formation defect caused by
Annexin A2 knockdown could be rescued by overexpressing
Annexin A2 (Fig. 1a), confirming that the effects of Annexin A2
knockdown seen were not the consequence of off-target effects of
the siRNAs. The inhibition of autophagosome formation when
Annexin A2 was downregulated was associated with the
accumulation of autophagic substrates like p62, and the
proportion of mutant huntingtin (Q74)-expressing cells with
aggregates (mutant huntingtin with 74 glutamine repeats is an
autophagic substrate and the proportion of cells with aggregates
is a function of its expression levels and correlates inversely
with autophagic activity) (Fig. 1c and Supplementary Fig. 1c)30,31.
On the other hand, Annexin A2 overexpression decreased p62
levels (Supplementary Fig. 1d).

Annexin A2 can form a heterotetrameric complex, consisting
of two Annexin A2 molecules bound via their N termini to a
dimer of p11/S100A10 light chains25. The light chain, and thus
presumably formation of the heterotetramer, was reported to
control Annexin A2 association with the plasma membrane and
to cortical actin25,32. To test if the effect of Annexin A2
knockdown was a consequence of its actions at the plasma
membrane, we knocked down the S100A10 light chain and found
that this had no effect on either LC3-II levels or on the numbers
of cells with Q74 aggregates (Supplementary Fig. 1e,f). These data
suggest that Annexin A2-regulated autophagy via its location to
another organelle, rather than the plasma membrane. For
example, p11/S100A10 is not required for the association of
Annexin A2 to endosomes or for its roles in early-to-late
endosome trafficking32. Recent studies place Annexin A2
upstream of the actin-nucleating proteins ARP2 and Spire1 in
the actin-dependent regulation of endosome maturation27. ARP2
and Spire1 knockdown decreased LC3-II levels in the presence of
BafA1 (Supplementary Fig. 1g,h). Spire1 knockdown also reduced
the number of GFP-LC3 dots per cell (Supplementary Fig. 1i).
These data suggested that Annexin A2 may regulate
autophagosome formation at the endosomal level by actin,
potentially via ATG9A sorting. This hypothesis is consistent
with the roles of Annexin A2 in actin-dependent endosomal
trafficking27 and the need for ATG9A to traffic from early to
recycling endosomes to the site of autophagosome biogenesis11.
The actin cytoskeleton has been shown to play a role in ATG9A
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vesicle motion in yeast and Drosophila33–35, and a role for actin
in autophagosome formation is supported by our recent data
showing a role for the WASH complex in mammalian
autophagy36. Our enthusiasm for a role of Annexin A2 in
the endosomal trafficking of ATG9A was increased by the
observation that Annexin A2 knockdown decreased the

colocalization of ATG9A and LC3, suggesting that ATG9A
was not able to reach autophagosomal membranes (Fig. 1c).
Consistent with a defect in ATG9A trafficking, Annexin A2
knockdown decreased the level of the ATG5-12 and ATG16L1,
which were previously shown to be downregulated as a
consequence of ATG9A knockdown18,37, but did not decrease
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Figure 1 | Annexin A2 regulates autophagy. (a) Western blot analysis of tubulin, Annexin A2 and LC3-II in HeLa where Annexin A2 was knocked down

using siRNA and/or transiently expressed, as indicated. The cells were starved in HBSS and treated with bafilomycin A1 (BafA1) as indicated. (SE, short

exposure; LE, longer exposure). Quantification of LC3-II/tubulin ratio is shown as mean ± s.e.m. (*Po0.05; two tail one-sample t-test). (b) Number of

GFP-LC3 dots per cell in Annexin A2 transiently expressing cells. HeLa cells where Annexin A2 was transiently expressed for 24 h were fixed and subjected

to microscopy. The data represent the number of GFP-LC3 dots per cell shown as mean ± s.d. (*Po0.05; two-tailed t-test; nZ50 cells per condition).

Representative confocal pictures are shown. Scale bars, 5 mm. (c) Quantification the proportion of mutant huntingtin (Q74)-expressing cells with

aggregates (HA-HDQ74) in Annexin A2 knockdown cells. HeLa cells transiently expressing HA-HDQ74 were fixed and subjected to microscopy after

HA-HDQ74 immunostaining using an anti-HA specific antibody. Representative pictures are shown. Data are mean ± s.d. of the percentage of cells with

HA-HDQ74 aggregates (n¼ 3 experiments; *Po0.05; two tail one-sample t-test). Typically, about 25% of the control cells have aggregates. We have

normalised controls to 100% to enable statistics from multiple experiments, as the control numbers vary in independent experiments. (d) Colocalization

between ATG9A and LC3 in Annexin A2 knockdown HeLa cells upon starvation. Confocal pictures are presented with magnified areas showing the

colocalization between ATG9A and LC3. Quantification of ATG9A and LC3 colocalization is shown on the right as Pearson’s coefficient. Data are

mean±s.e.m. (nZ20 cells; *Po0.05; two tail one-sample t-test). Scale bars, 5 mm.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9045 ARTICLE

NATURE COMMUNICATIONS | 6:8045 | DOI: 10.1038/ncomms9045 | www.nature.com/naturecommunications 3

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Beclin-1 or VPS34 levels (two autophagy proteins acting in the
early steps of autophagosome biogenesis; Supplementary Fig. 1c).

Annexin A2 regulates ATG9A sorting from endosomes. The
likelihood that Annexin A2 directly regulates the trafficking of
ATG9A-containing endosomes was supported by the observation
of a pool of ATG9A in close proximity to Annexin A2 as shown
by proximity ligation assay (Fig. 2a; the positive control used
VPS26–VPS35 proteins, part of retromer complex). We also
observed colocalization between endogenous ATG9A and endo-
genous Annexin A2 by confocal microscopy and electron
microscopy (Supplementary Fig. 2a,b). As Annexin A2 serves as
an anchor for nucleating actin polymerisation on endosomes27,
we analysed the colocalization between endogenous ATG9A and
filamentous F-actin using phalloidin toxin (an F-actin-binding
toxin) conjugated to Alexa488 or by expressing mCherry-Lifeact-
7 protein38. As seen in Fig. 2b and Supplementary Fig. 2c,d,
F-actin formed patches around ATG9A vesicles and some
ATG9A vesicles with actin patches were also positive for LC3.
We observed the localization of actin on ATG9A vesicles by live
cell imaging using transient expression of ATG9A-GFP and
actin-mRFP (Fig. 2c and Supplementary Movie 1). We confirmed
the localization of actin on ATG9A vesicles by super-resolution-
structured illumination microscopy and found that 430% of
ATG9A vesicles colocalized with actin (Fig. 2d). Since not all
ATG9A vesicles colocalized with actin, we next analysed the
localization of actin-positive ATG9A vesicles with an endosomal
marker, given the previous literature on the role of actin in
endosomal maturation27,39, and our previous demonstration of
trafficking of ATG9A through early endosomes11. We observed
the presence of Annexin A2 on ATG9A vesicles positive for EEA1
(an early endosomal maker) or actin (Supplementary Fig. 2e).
The localization of actin around ATG9A vesicles was decreased
by Annexin A2 knockdown, suggesting that Annexin A2 serves as
an anchor for actin on ATG9A vesicles (Fig. 2e). These effects
parallel previous observations that Annexin A2 impairs actin
patch nucleation on endosomes27. (Note that the Pearson’s
coefficient is derived from a correlation analysis, and is expected
to be low for F-actin and ATG9A, since while a fair proportion of
the ATG9A is associated with F-actin, only a small percentage of
the F-actin pixels colocalizes with ATG9A, as F-actin is widely
distributed with a major component being at the cell cortex.)

To test the role of actin in ATG9A trafficking, we used drugs
that depolymerize (latrunculin A: LatA and CK-666 (an ARP2/3
inhibitor)) or immobilize (Jasplakinolide: Jak) the actin
cystokeleton40–42. In cells treated with Latrunculin A, CK-666
and jasplakinolide, we observed a decrease in ATG9A-actin
colocalization, an increase in ATG9A-early endosome (EEA1)
colocalization (Fig. 3a) and an increase in ATG9A-RAB5
(a marker of early endosomes) colocalization as seen by live cell
imaging (Fig. 3a and Supplementary Movies 2–4). Moreover,

inhibition of ARP2 via CK-666 treatment decreased the
localization of actin to ATG9A vesicles positive for EEA1, but
did not affect the recruitment of Annexin A2 to ATG9A vesicles
(Supplementary Fig. 2e). Annexin A2 and ARP2 knockdown
recapitulated the phenotype observed with actin drugs—an
increased colocalization between ATG9A and EEA1 or RAB5
(Fig. 3b and Supplementary Movies 5–7). Moreover, the size of
endosomes (EEA1-positive) increased like in Annexin A2 and
ARP2 knockdown cells (Fig. 3b), consistent with impaired
trafficking out of the early endosomes. Consistent with this
model, transferrin, which normally traffics from early endosomes
to recycling endosomes, accumulated in the ATG9A-EEA1
positives vesicles in Annexin A2 and ARP2 knockdown cells
(Fig. 3b). These data suggest that ATG9A sorting from early
endosomes requires an Annexin A2-dependent actin mechanism.
To assess if this disturbed ATG9A trafficking was functionally
relevant to autophagy, we tested if these actin-perturbing drugs
affected autophagosome formation. As seen in Supplementary
Fig. 3a–d, Latrunculin A, CK-666 and Jasplakinolide increased
LC3-II in the absence of BafA1, but decreased LC3-II in the
presence of BafA1 and decreased ATG9A and LC3 colocalization.
These data suggest that these drugs play a role in both
autophagosome formation (LC3-II levels with BafA1) and
autophagosome degradation (LC3-II levels without BafA1). The
latter could be the consequence of the role of actin in the
recycling of the vATPase pump, as shown recently43. The effect of
these drugs on autophagosome formation may be due to defective
ATG9A sorting from endosomes. Given that the levels of LC3-II
in Annexin A2 knockdown cells decreased with or without BafA1
(Fig. 1a), this suggests that Annexin A2 does not play a role
in autophagosome clearance. The effect of Annexin A2
downregulation on ATG9A sorting could be rescued by
transiently expressing Annexin A2, as seen by the reduction of
the early endosomes size (EEA1 vesicles), ATG9A clustering and
ATG9A-EEA1 colocalization (Supplementary Fig. 3e).

Annexin A2 regulates ATG9A sorting to recycling endosomes.
We and others recently showed that ATG9A localizes transiently
to recycling endosomes, which play an important role in
autophagosome biogenesis. In order to understand if Annexin A2
regulates ATG9A sorting from early endosomes to recycling
endosomes, we knocked down Annexin A2 and Spire1 or
inhibited actin polymerization with CK-666 treatment. We first
confirmed that a pool of ATG9A vesicles is associated with
recycling endosomes using RAB11 as a marker (Fig. 4a). Annexin
A2 and Spire1 knockdown or CK-666 treatment decreased the
localization of ATG9A to RAB11-positive vesicles but increased
its localization to EEA1-positive structures, as seen previously
(Fig. 4a). Consistent with this colocalization analysis, the
recycling of transferrin is impaired in Annexin A2 knockdown

Figure 2 | Annexin A2 regulates ATG9A and actin colocalization. (a) HeLa cells were fixed and analysed using the Proximity Ligation Assay, with primary

antibodies as indicated. The cells were imaged by confocal microscopy. Scale bars, 5 mm. (b) Colocalization between ATG9A and F-actin in HeLa cells.

Confocal pictures showing colocalization between endogenous ATG9A and F-actin (using Phalloidin staining) are presented. Magnified areas are shown

with arrows indicating actin patches around ATG9A vesicles. Scale bars, 5 mm. (c) Colocalization between ATG9A and actin in live cells. Confocal pictures

showing colocalization between endogenous ATG9A and actin (using actin-mRFP) are presented. Magnified areas are presented showing ATG9A and actin

colocalization. Scale bars, 5mm. See Supplementary Movie 1. (d) Colocalization between ATG9A and F-actin by structured illumination super-resolution

microscopy. Cells were fixed, immunostained for endogenous ATG9A and F-actin using Phalloidin conjugated to Alexa555 and subjected to structured

illumination microscopy. Top and bottom show slices through the top and bottom of the cells, respectively. Colocalized pixels are shown in green on the

right of each panel using ImageJ. Colocalization between ATG9A and F-actin is shown as Manders’ coefficient representing the number of ATG9A pixel

colocalizing with F-actin pixels. Data are mean ± s.e.m. Scale bars, 5mm. (e) Colocalization between ATG9A and F-actin (using Phalloidin staining) in

Annexin A2 knockdown cells. Confocal pictures are presented with magnified areas showing the colocalization between ATG9A and F-actin in control cells

and a decreased colocalization in Annexin A2 knockdown cells. Scale bars, 5 mm. Data are Pearson’s coefficient as mean ± s.e.m. (nZ20 cells; *Po0.05;

two tail t-test).
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cells (Fig. 4b). These data suggest that Annexin A2 regulates
ATG9A trafficking from early to recycling endosomes.

Starvation upregulates Annexin A2 expression via JNK-c-Jun.
Amino acid and serum starvation is a classical autophagy-
inducing stimulus3,44, which increased ATG9A movement in an

actin-dependent manner, as seen by the automatic tracking of
ATG9A vesicles using live cell imaging software, since the
movement was abrogated by jasplakinolide (Supplementary
Fig. 4a,b). The increase of ATG9A vesicle movement upon
starvation could be mimicked by overexpressing Annexin A2 in
cells grown in fed conditions and was reversed in Annexin A2 or
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Figure 3 | Actin and Annexin A2 regulate ATG9A sorting from endosomes. (a) Colocalization between ATG9A, EEA1 and F-actin in HeLa cells treated

with drugs affecting actin polymerization for 2 h; latrunculin A (0.5mM), jasplakinolide (200 nM) and CK-666 (50 mM). Confocal pictures showing

colocalization between ATG9A, EEA1 and F-actin (using Phalloidin staining) are presented with magnified areas. Colocalization between ATG9A and RAB5

(using mRFP-RAB5) in live cells is also shown (Supplementary Movies 2–4). Quantification of ATG9A with F-actin and ATG9A with EEA1 colocalization is

shown on the right as Pearson’s coefficient. Data shown as mean ± s.e.m. (nZ20 cells; *Po0.05; two tail t-test). Scale bars, 5mm. (b) Colocalization

between ATG9A, EEA1 and internalized transferrin in Annexin A2 and ARP2 knockdown cells. Confocal pictures showing colocalization between ATG9A,

EEA1 and internalized transferrin (30 min) are presented with magnified areas. Colocalization between ATG9A and RAB5 (using mRFP-RAB5) in live cells is

also shown (Supplementary Movies 5–7). Quantification of ATG9A and EEA1 colocalisation is shown on the right as Pearson’s coefficient. Data are mean
± s.e.m. (nZ20 cells; *Po0.05; two tail t-test). Scale bars, 5 mm.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9045

6 NATURE COMMUNICATIONS | 6:8045 | DOI: 10.1038/ncomms9045 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


ARP2 knockdown cells (Supplementary Fig. 4a,b). Starvation also
upregulated Annexin A2 expression at the protein level in HeLa
cells, immortalized mouse embryonic fibroblasts (MEFs) and
primary mouse fibroblasts (primary MEF; Fig. 5a and
Supplementary Fig. 4c). Upregulation of Annexin A2 protein
levels was autophagy independent, as this occurred in ATG16L1
knockout cells (that do not have any LC3-II; Fig. 5a). Starvation
increased Annexin A2 mRNA levels (Supplementary Fig. 4d). The
effect of starvation on Annexin A2 expression seemed to be
independent of TFEB, described as a positive transcription factor
regulating autophagy upon starvation14, as we did not observe an
increase in Annexin A2 level when TFEB was overexpressed, even
in its constitutively active form (Supplementary Fig. 4e). TFEB
knockdown also did not affect starvation-induced Annexin A2
levels (Supplementary Fig. 4e). Interestingly, starvation increased
Annexin A2 and LC3-II levels in mouse brains (Fig. 5b).
Before starvation, Annexin A2 levels were very low in the
brain. This is consistent with the literature showing that Annexin
A2 is expressed at low levels in brain and is upregulated
in response to stresses such as tumours, inflammation and

neurodegeneration45. Starvation represents a stress for the brain
that needs a constant supply of energy, suggesting that starvation-
dependent autophagy in the brain may represent an important
pathway to maintain brain homoeostasis, and Annexin A2 could
be an important regulator of this pathway.

Using the Text Mining Application from SABiosciences and
the UCSC Genome Browser, a binding site for c-Jun and AP-1
transcription factors in the promoter of Annexin A2 was
predicted. Therefore, we examined whether c-Jun was involved
in the upregulation of Annexin A2 under starvation. The
inhibition of c-Jun by pharmacological compounds (JNK
inhibitor X) and a peptide that prevents c-Jun binding to its
activator JNK (c-Jun peptide) abrogated the increase of Annexin
A2 levels under starvation in a concentration-dependent manner
(Fig. 5c and Supplementary Fig. 4f). During starvation, we
observed phosphorylation of c-Jun at Ser 63 and 73, which is
indicative of its activation by JNK46 (the transcriptional activity of
c-Jun is strongly potentiated by phosphorylation at these sites)
as well as the phosphorylation of JNK at Thr183 and Tyr185
(Fig. 5d). The JNK inhibitor X c-Jun peptide decreased
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starvation-induced autophagy, as measured by the decrease of the
number of LC3 vesicles per cell LC3-II (Fig. 5e). Also, starvation
increased the amount of c-Jun binding to Annexin A2 promoter,
as assessed by chromatin immunoprecipitation (ChIP; Fig. 5f).
Moreover, starvation enhanced the transcriptional activation of
Annexin A2 promoter, whereas point mutations in c-Jun binding
site within Annexin A2 promoter significantly reduced this effect
and a double mutation decreased it even more dramatically
(Fig. 5g). These results support a role of c-Jun in the upregulation
of Annexin A2 transcription under starvation.

Discussion
Autophagy upregulation is essential for surviving periods of
starvation. While the mTOR pathway is a key conserved
mechanism enabling this response, it regulates the ULK1/2–
ATG13 complex, which acts far upstream in the process of
autophagosome biogenesis47. Another pathway that is regulated
after starvation in cells is an increase in Beclin-1 activity mediated
by JNK phosphorylation of Bcl-2, which in its unphosphorylated
state binds and inhibits Beclin-1 (ref. 48). Here we describe a
transcriptional response pathway regulating autophagy, which is
signalled by JNK. We find that autophagy upregulation in cells or
mouse brain after starvation correlated with increased Annexin
A2 levels. The starvation response was dependent on Annexin A2
levels as it was abrogated by Annexin A2 knockdown, while
Annexin A2 overexpression in fed cells was sufficient to enhance
autophagosome biogenesis. The induction of Annexin A2 was
mTOR independent, and was mediated at the transcriptional level
by JNK-activated c-Jun binding to the Annexin A2 promoter.
The identification of multiple cooperating responses enabling
maintenance of starvation-induced autophagy would be
consistent with the notion that autophagosome formation
requires multiple converging membrane trafficking pathways.

Annexin A2 regulates autophagy via its effects on actin and
ATG9A trafficking. We have characterized the sorting of ATG9A
from endosomes and identified actin and actin-nucleating factors
such as Annexin A2, ARP2 and Spire1 as important players.
Actin had previously been shown to be involved in autophago-
some formation but the mechanism remained unclear, as it may
affect multiple steps, including trafficking, recruitment of key
autophagy proteins and autophagosome maturation33–35,49.
We have observed that actin forms patches around ATG9A
vesicles and the perturbation of actin polymerization (using
drugs, or knockdown of actin-nucleating factors) trapped ATG9A
in early endosomes and decreased its association with recycling
endosomes and autophagosomes. Our study provides a
mechanism of ATG9A sorting from endosomes via the control
of actin dynamics by Annexin A2, ARP2 and Spire1. As this
parallels the roles of these proteins in early-to-late endosomal
trafficking27, and impaired exit of ATG9A from early endosomes
will attenuate autophagosome biogenesis11, it is likely that the
effects of Annexin A2 on ATG9A trafficking are sufficient to
account for the impaired autophagosome formation. While
Annexin A2 downregulation reduced the levels of ATG16 and
ATG5/12, these effects were previously reported after ATG9A
downregulation18,37 and while these would be consistent with the
ATG9A-centric models we have proposed, we cannot exclude
the possibility that these may be effects also mediated by
ATG9A-independent consequences of Annexin A2 inhibition.
For example, a recent student recently found that Annexin
A2-impaired ATG16 vesicle biogenesis and homotypic fusion50.

In summary, we have identified Annexin A2 as a protein that is
upregulated upon starvation via JNK and c-Jun. Annexin A2
upregulation is important for inducing autophagy, especially
during starvation. This JNK-c-Jun-Annexin A2 pathway contrasts

with previously described transcriptional pathways impacting on
autophagy, like TFEB, TFE3 and FOXO3A, where single effector
genes have not been identified14–16. The JNK-c-Jun-Annexin A2
axis may have relevance in disease contexts as well. Nutrient
deprivation limits the growth of metastatic tumours and
autophagy appears to be one way that can ameliorate this
phenomenon, and may thus contribute to metastatic cancer
growth. It is attractive to speculate about the potential anti-
autophagic mechanisms for the beneficial effects of neutralizing
Annexin A2 in treating cancer, since this appears to have efficacy
in a human breast tumour xenograft model, where an Annexin
A2-neutralizing antibody reduced tumour growth51,52.

Methods
Cell culture. HeLa cells (from ATCC) and MEF (immortalised, from Yoshimori
Tamotsu, Osaka University, Japan or primary from Roger Davis, University of
Mass. Medical School, USA) were cultured in DMEM D6546 (Molecular Probes)
containing 10% fetal bovine serum, supplemented with 2 mM L-glutamine and
100 U ml� 1 penicillin/streptomycin in 5% CO2 at 37 �C. HeLa cells stably
expressing GFP-LC3 were cultured in DMEM D6546 containing 10% fetal bovine
serum supplemented with 2 mM L-glutamine, 100 U ml� 1 penicillin/streptomycin
and 500 mg ml� 1 G418 (Sigma) in 5% CO2 at 37 �C.

Antibodies and reagents. Antibodies include: mouse monoclonal anti-tubulin
(Sigma; T9026; 1/4,000), rabbit anti-LC3 for western blot (Novus Biologicals;
NB100-2220; 1/4,000), mouse monoclonal anti-LC3 for immunofluorescence (MBL
International; M152-3; 1/100), rabbit anti-GFP (Clontech; 632460; 1/1,000); rabbit
anti-ATG9A (Abcam; EPR2450(2); 1/250); rabbit anti-actin (Sigma; A2066;
1/2,000); mouse monoclonal anti-Annexin A2 (BD Biosciences; 610071; used for
wersternblot analysis; 1/1,000); mouse monoclonal anti-Annexin A2 (Santa Cruz
Biotechnology; 3D5; used for proximity ligation assay; 1/100); mouse anti-EEA1
(Abcam; 1G11; 1/200), mouse anti-ARP2 (Abcam; 49674; 1/500); mouse anti-
GAPDH (Abcam; ab8245; 1/4,000), rabbit anti-TFEB (Cell Signaling; 4240; 1/500),
rabbit anti-ATG12 (Cell Signaling; 4180S; 1/1,000), rabbit anti-Beclin-1 (Cell
Signaling; D40C5; 1/1,000), rabbit anti-Spire1 (Santa Cruz Biotechnology;
sc-85162; 1/500), rabbit anti-VPS34 (Life Technologies; 38-2100; 1/1,000), rabbit
anti-JNK (Cell signalling; 9258; 1/1,000), mouse anti-phospho JNK (Cell signalling;
9255; 1/1,000), rabbit anti-phospho-Jun (ser 63) (Cell Signaling; 9261S; 1/1,000),
rabbit anti-Jun (Cell Signaling; 9162; 1/1,000) mouse anti-VPS35 (Santa Cruz
Biotechnology, sc-374372; 1/500) and rabbit anti-VPS26 (Abcam; ab23892;
1/1,000), described previously53.

Reagents include: bafilomycin A1 (Sigma), Alexa Fluor 488-, 546-,
647-phalloidin (Invitrogen; A12379, A22283, A22287 respectively), latrunculin A
(Sigma; L5163; used at 0.5 mM for 2 h), jasplakinolide (Sigma; J4580; used at
200 nM for 2 h), Alexa Fluor 488-transferrin (Invitrogen; T-11342), CK-666
(Sigma; SML-0006; used at 50 mM for 2 h), 420140 JNK Inhibitor X (Calbiochem;
BI-78D3) and c-Jun peptide (Tocris; 1989).

Plasmids. Annexin A2, ATG9A-GFP, TFEB-FLAG (wild type or S142A mutant)
actin-mRFP, mRFP-RAB5, GFP-LC3 and mRFP-LC3 have been described
previously14,20,27,54,55. mCherry-Lifeact-7 was a gift from Michael Davidson
(Addgene plasmid # 54491). The luciferase reporter containing Annexin A2
promoter with c-Jun binding site was obtained from GeneCopoeia (Promoter
reporter clone for Human NM_001002858, reference HPRM12525-PG02).

Cell transfection. The cells were seeded at 1–2� 105 per well in 6-well plates and
transfection was performed using LipofectAMINE or TransIT-2020 (for DNA) or
LipofectAMINE 2000 (for siRNA and double transfections with DNA and siRNA;
Invitrogen, Mirus), using the manufacturer’s protocol. Pre-designed siRNA
were ordered from Thermo Scientific (Dharmacon Technologies) (siRNA IDs:
Annexin A2—ON-TARGETplus SMARTpool and Set of 4, L(U)-010741;
ARP2—ON-TARGETplus SMARTpool, L-012076; Spire1—ON-TARGETplus
SMARTpool, L-023397; TEFB—ON-TARGETplus SMARTpool and set of 4,
LQ-009798) or Invitrogen ( Annexin A2—s1385).

Modulation of autophagy. To inhibit LC3-II degradation, cells were treated
with Bafilomycin A1 diluted in cell culture media to a working concentration of
400 nM for 4 h, which is saturating for this effect56. To induce autophagy in an
mTOR-dependent manner, cells were amino acid- and serum-starved in Hanks
balanced salt solution (HBSS; Sigma) for 1–4 h.

Food deprivation in mice. All animal studies were performed under the
jurisdiction of appropriate Home Office Project and Personal animal licences and
with local Ethics Committee approval from the University of Cambridge. All mice
were weighed at the start of experiments. Twelve-week-old male C57BL/6 mice
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were deprived of food for 22.5 h, followed by free access to food for 1.5 h. All mice
were weighed before (and also after) feeding to determine weight loss (15% or more
would change the severity limit from mild to moderate, would result in schedule
one killing of mice). Mice tissues were collected at different time point after
feeding: immediately after giving food after 4 h, after 8 h and after 22.5 h. All mice
had free access to water throughout the procedure.

Western blotting. Cells were collected, rinsed with phosphate buffered saline
(PBS), and lysed on ice for 30 min in PBS containing 1% Triton X100 and complete
protease inhibitor cocktail (Roche). Lysates were centrifuged at 12,000g for 5 min at
4 �C, and supernatants were resolved by SDS–polyacrylamide gel electrophoresis
and transferred to polyvinylidene difluoride membranes. The membranes were
blocked with Tris-buffered saline 0.1% Tween-20 (TBST) containing 1% non-fat
dry milk and were then incubated overnight at room temperature with primary
antibodies diluted in TBST. Membranes were washed with TBST, incubated for 1 h
at room temperature with 2,500� dilutions of HRP-conjugated secondary anti-
bodies (GE Healthcare Bioscience) in TBST containing 1% non-fat dry milk, and
washed. Immunoreactive bands were then detected using ECL (GE Healthcare
Bioscience). Uncropped scans for the most important experiments are shown in
Supplementary Fig. 5.

Fluorescence and immunofluorescence microscopy. For immunofluorescence
microscopy, cells were cultured on coverslips, fixed with 4% paraformaldehyde in
PBS for 5 min or with ice-cold methanol for 5 min, and permeabilized with 0.1%
Triton X100 in PBS for 5 min. Coverslips were incubated with primary antibodies
for 2 h, washed three times with PBS, and incubated with secondary antibodies for
30 min. Samples were mounted using ProLong Gold antifade reagent with or
without DAPI (4,6-diamidino-2-phenylindole; Invitrogen) and observed using a
Zeiss LSM710 laser confocal microscope. Samples were analysed by Structured
Illumination Microscopy using an ELYRA Superresolution microscope from Zeiss.
Automatic counting of LC3 vesicles from HeLa cells stably expressing GFP-LC3
was performed using the Cellomics ArrayScan VTI HCS Reader (20� objective)
and the Spot Detector V3 Cellomics BioApplication (Thermo Fisher Scientific).
The numbers of vesicles per cell were counted for two thousand cells per coverslip
and the mean number of vesicles per cell was calculated by the ArrayScan software.

Immunogold electron microscopy. HeLa cells were fixed with a mixture of 2%
paraformaldehyde and 0.2% glutaraldehyde in PBS for 2 h, at room temperature.
Cells were then prepared for ultrathin cryosectioning and immunogold-labelled, as
previously described57. Briefly, fixed cells were washed once in PBS/0.02 M glycine,
after which cells were scraped in 12% gelatin in PBS and embedded in the same
solution. The cell-gelatin was cut into 1 mm blocks, infiltrated with 2.3 M sucrose
at 4 �C, mounted on aluminium pins and frozen in liquid nitrogen. Ultrathin
cryosections were picked up in a mixture of 50% sucrose and 50% methyl cellulose
and incubated with specific antibodies revealed with 10 or 15 nm protein A gold
(Utrecht).

Quantification of colocalization. Pearson’s coefficient is a standard statistical
analysis designed to measure the strength of a linear relationship between two
variables. From a technical perspective the Pearson’s coefficient is robust to issues
like background and signal intensity. We used the Pearson’s coefficient to analyze
colocalization between ATG9A and LC3, ATG9A and F-actin, ATG9A and EEA1,
ATG9A and RAB11 following different treatments (siRNA or drugs). To have a
more precise idea about the colocalization between two markers (the percentage of
pixels of one marker that overlaps with another marker), we used the Mander’s
coefficient.

Proximity ligation assay. The proximity ligation assay kit was obtained from
Sigma and used according to manufacturer’s instructions. Briefly, cells were seeded
on 13 mm coverslips and allowed to grow in culture for 24 h. After fixation with
ice-cold methanol, and blocking with 10% fetal bovine serum in PBS, the cells
were incubated with anti-Annexin A2 (Santa Cruz Biotechnology; 3D5) and anti-
ATG9A (Abcam; EPR2450(2)). Following incubation with the primary antibodies,
the cells were incubated with secondary antibodies conjugated to oligonucleotide
primers. The primers were ligated and then rolling circle amplification was used to
create a reaction product that is observable by microscopy due to hybridization of
fluorescently labelled nucleotides. Successful production of a DNA product
requires that the primary antibodies bind their respective antigens and reside
within 40 nm of each other. Coverslips were mounted on slides and imaged by
confocal microscopy.

Transferrin recycling assay. Transferrin recycling assay was performed as
previously described58. Briefly, the cells were incubated for 30 min at 37 �C in the
continuous presence of transferrin–Alexa-Fluor-647 (0.05 mg ml� 1). Cells were
then washed and incubated at 37 �C in media supplemented with 0.2 mg ml� 1

unlabelled transferrin for various times before fixation in 4% paraformaldehyde
in PBS. Cell-associated transferrin–Alexa-Fluor-647 was determined by FACS

analysis using BD FACS Calibur flow cytometer (BD Biosciences) and FlowJo
software (Tree Star Inc.).

Automatic vesicle tracking. Analysis of ATG9A-GFP vesicle movement was
performed using Imaris software and the automatic particle-tracking programme.
Imaris provides statistical data that is specific to tracking such as length of tracks
and speed. The data originated from Imaris, track length (mm) were plotted on
graphs using Excel and analysed statistically using Mann–Whitney test.

Annexin A2 expression by qPCR. Total RNA was first extracted from cells using
TRIzol (Invitrogen). Reverse transcription was performed using SuperScript III
First-Strand Synthesis System for PCR with reverse transcription (Invitrogen).
Annexin A2 specific primers were purchased from Invitrogen (human specific:
forward: GCCATCAAGACCAAAGGTGT, reverse: TCAGTGCTGATGCAAGT
TCC; mouse specific: forward: ACGCTGGAGTGAAGAGGAAA, reverse:
ACAGGGGCTTGTTCTGAATG). Fold change values were calculated using the
DDCt method. An unpaired t-test was used to calculate statistical significance.

Chromatin immunoprecipitation. A total of 108 HeLa cells/condition was
crosslinked using 1% formaldehyde in growth medium for 10 min and then cells
were treated with 0.215 M glycine for 5 min to stop the crosslinking and washed
twice with PBS. Cells were lysed in buffer A (10 mM Tris pH 8.0, 10 mM NaCl and
0.2% NP40) supplemented with 10 mM NaBu and protease/phosphatase inhibitors
mix (Roche) for 10 min on ice. The nuclei were recovered and resuspended in
buffer B (50 mM Tris pH 8.1, 10 mM EDTA and 1% SDS) supplemented with
10 mM NaBu and protease/phosphatase inhibitors mix (Roche) and incubated for
10 min on ice. Cells were then diluted 2� in buffer C (20 mM Tris pH 8.1, 2 mM
EDTA, 150 mM NaCl, 1% Triton X100 and 0.01% SDS) supplemented with 10 mM
NaBu and protease/phosphatase inhibitors mix (Roche) before sonication for
10 min at 4 �C. Chromatin was then cleared and equal amounts were incubated
overnight at 4 �C on a rotating wheel with anti-c-Jun antibody—ChIP Grade
(Abcam; ab31419), anti-Histone H3 (Abcam; ab8580) and anti-mouse IgG pro-
duced in rabbit (Sigma; M7023). Immunocomplexes were isolated using protein
A-sepharose (GE Healthcare), washed twice with buffer D (20 mM Tris pH 8.1,
2 mM EDTA, 50 mM NaCl, 1% Triton X100 and 0.1% SDS) and once with buffer E
(10 mM Tris pH 8.1, 1 mM EDTA, 0.25 M LiCl, 1% NP40 and 0.1% sodium
deoxycholate monohydrate) and finally once with TE buffer. Samples were then
eluted using buffer F (100 mM NaHCO3 and 1% SDS). The crosslinking was
reversed by treating the samples with RNase A and NaCl at a final concentration of
0.3 M overnight at 67 �C and subsequent treatment with proteinase K (Fisher
Scientific) for 2 h at 45 �C. Samples were then cleaned using Qiaquick PCR
Purification Kit (Qiagen) and subjected to a Real-Time PCR analysis. The primers
used for the amplification of c-Jun binding site in Annexin A2 1 promoter are:
50-CCTGGGTGGGGCTTTTATAC-30 and 50-GTGAGTCACCCCTGACTTGG-30 .

Luciferase reporter assays. HeLa cells were seeded in six multiwells and
transfected with 2 mg of the indicated luciferase reporter and cultured in a full
medium for 48 h. The luciferase activity was then measured following the
manufacturer instructions (Dual luminescence Assay Kit, GeneCopoeia). Point and
double mutations within the c-Jun recognition site of the promoter of Annexin A2
were generated with QuikChange Multi Site-Directed Mutagenesis Kit (Agilent
Stratagene; 200515).

Statistical analysis. Significance levels for comparisons between groups were
determined with t- tests, repeated measure, factorial ANOVA or Mann–Whitney
using the STATVIEW software, version 4.53 (Abacus Concepts, Berkeley, CA).
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