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INTRODUCTION

itiated. Repression of protein synthesis occurs be-
¢ translation but after transcription (Lindquist,
986; Lindquist and Craig, 1988). Heat shock expres-
S1on of the hsp genes is mediated, in part, by heat
Shock elements (HSE) at the start of the gene (Bienz
The hsp70s (mol. wt 70,000) are evolutionarily
hly conserved proteins, The hsp70 proteins are
ded by individual genes belonging to a multigene
ly, each gene differentially expressed under
s Mumber of different physiological conditions.

8, 1988), humans (Mues ez al.,

s Saccharomyces cerevisige (Craig, 1989) and,

Subject of this review, Caenorhabditis elegans
‘;g:’ch ¢ al, 1988; Hesch! and Baillie, 1989a,

The hsp70 and: hsc70 proteins have been
10 the cytoplasm, the nucleus (Lindquist
C_’alg, 1988), the endoplasmic reticulum (ER)
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abditis elegans has been characterized.
igene family of C. elegans.

assigned to one of at least three hsp70 gene
otein that has the potential to be translocated
nsists of a protein that has the potential to be

que characteristics including introns in the heat
RNA and two grp78 related genes, one of which

rization of C. efegans hsp70 multigene family is the basis for a genetic
function of a gene family during the development of a multicellular

(Munro and Pelham, 1986; Rose et al. 1989,
Normington er al, 1989} and the mitochondria
(Craig et al., 1989, Engman et al., 1989; Leustek et al.,
1989). Recent evidence suggests that the hsp70-
related proteins are associated with other proteins
and appear to be involved in: (1) the translocation of
proteins across intraceilular membranes into the ER
and the mitochondria; (2) the secretion of proteins;
(3) the binding of exposed hydrophobic sites on’
unfolded or malformed proteins and incompletely
assembied protein complexes; and {4) the disassembly
of folded protein complexes (Deshaies er al., 1988;
Ellis and Hemmingson, 1989; Rothman, 1989),

The heat shock response of Caenorhabditis elegans

Caenorhabditis elegans is a small, free-living soil
nematode found commonly throughout many parts
of the world and is well suited for combined biochem- .
ical and genetical analyses (Kenyon, 1988; Wood
et al, 1988). Feeding primarily on bacteria, this
nematode reproduces with a life cycle of approxi-
mately 3 days under ideal conditions. After hatching
the nematode undergoes four Jarval moults culminat-
ing in the mature, adult form. Each larval stage is
designated L1 through L4. There are two aduit forms,
the self-fertilizing hermaphrodite and the male, each
comprised of approximately 1000 somatic nuclei; the
cell lineages of both are completely known (Sulston,
1988). Under conditions of limited food supplies,
the L2 larva can enter an aiternative developmental
pathway to produce the dauer larva, This specialized
L3 larva does not feed, is resistant to desiccation
and stress, is altered in energy metabolism, is
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arrested in development (Riddle, 1988) and may be
transcriptionally silent (Snutch and Baillie, 1983).

The nematode, when shifted from 20°C to tem-
peratures above 28°C, stops growing, fails to repro-
duce and slowly dies. Induction of the hsps first
becomes apparent after exposure to temperatures
greater than 29°C and up to at least 35°C. The
synthesis of proteins normal to development is re-
pressed post-transeriptionally upon heat shock. Eight
sets of proteins ranging in mol. wts from 81,000 to
16,000 are induced upon heat shock. Hsp29, hspl9
and hsp16 are induced at 29°C, with the synthesis of
hspl6 gradually decreasing as the severity of the
stress increases. Synthesis of hsp81, hsp70, hsp4] and
hsp38 are enhanced during heat stress. Hsp70, the
major heat inducible protein, is synthesized immedi-
ately upon heat shock. Dauer larvae display a heat
shock response and synthesize a set of the hsp
mRNAs inducible during normal development. The
only apparent difference is that the dauer larvae
synthesize at least one extra protein of mol. wt
approximately 50,000 when compared to nematodes
growing normally (Snutch and Baillie, 1983).

There are at least nine members of the hsp70
multigene family in C. elegans. Six of these genes have
been cloned and analyzed (Snutch et al., 1988). Five
of these cloned genes have been characterized and
assigned to subfamilies based on nucleotide identity
between each other and homology te other known
hspT70-like genes (Snutch er al, 1988; Heschl and
Baillie, 198%a, 1989b). There are at least three hsp70
subfamilies with one or more gene members that have
been named according to the first hsp70 gene defined
for each subfamily. The HSP-1 subfamily is com-
prised of the Asp-I and hsp-2ps genes, the HSP-3
subfamily is comprised of the Asp-3 and hsp-4 genes
and the HSP-6 subfamily is comprised of the hsp-6
gene. The structural relationships of each of the
members of the hsp70 multigene family of C. elegans
is summarized in Fig. 1. A comparison of the
C. elegans hsp70 multigene family to the S. cerevisiae
hsp70 multigene family (Craig, 1989) indicates that
several gene members and subfamilies remain to be
identified in C. elegans. The hsp-I gene has been
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Fig. 1. Structural retationships of members of the C. elegans
hsp70 multigene family. Approximate nucleotide identities
are based on complete (hsp-1, hsp-2ps and hsp-3) and
pattial (hsp-4 and hsp-6) DNA sequence data. The sequence
data is compiled from Snutch e al., 1988; Heschl and
Baillie 19893 b: and our unpublished dats
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_pers. commn).

mapped genetically to the right end of linkage groy e.thNAs are !

(LG) IV (Snutch er al., 1988) while the hsp.zps-:n.p-
hsp-3 genes have been assigned to positions og the
cloned C. elegans genome and both- have - beey
mapped by in situ hybridizations to LGX (left) (as
described in Coulson et al., 1986, 1988; D, Albertson;

The HSP-1 subfamily

The hsp-J gene is expressed throughout nematode
development. Upon temperature upshift, hsp.]
mRNA synthesis is enhanced 2-6-fold, The 5 regul
tory region of the Asp-1 gene contains several copies
of the HSE, consistent with the heat inducibility of;
the gene (Snutch et al., 1988). In the unstressed dauer
larva, it appears that the hsp-1 gene is transcribed at oo
levels comparable to those observed at other larval
stages (B. Dalley and M. Golomb, pers. commn
Characterization of the Asp-I gene and its predicted
protein product, hsp70A, suggests that hsp70A is
closely related to the Drosephila heat inducible
hsp70s and the constitutively expressed, - heat:
inducible hsc70 and the S. cerevisiae SSA hsp70.
subfamily (Snutch et al., 1988). S

During our analysis of the hsp-1 gene and two
other heat inducible hsp70 genes, ksp-< and Asp
(discussed below), we detected the presence of three’
introns or non-coding, intervening sequences. The:
heat inducible hsplé genes of C. elegans also
have introns (Russnack and Candido, 1985; Jones
et al., 1986). At first, this does not seem unusual as
C. elegans genes characterized to date contain introns
(Blumenthal and Thomas, 1988), However, it is un-;
usual for heat inducible hsp genes to be interrupted
by introns. Yost and Lindquist (1986) demonstrated
in Drosophila that intron excision (or cis-splicing):
from pre-mRNAs is transiently inhibited during a_
severe heat stress, including excision of the sole intror
from the Drosophila hsp83 pre-mRNA. If intron:
excision is inhibited upon severe heat shock in the:
nematode then the introns in the heat inducible hsp70
and hsp16 genes should not be excised. It has also.
been demonstrated that the hsp-/ mRNA is rrans-
spliced (Bektesh er al., 1988; our unpublished results).
Trans-splicing involves the attachment of an exon
encoded elsewhere in the genome to the pre-mRNAS
presumably by mechanisms similar to those used in
cis-splicing (Blumenthal and Thomas, 1988). There-
fore, trans-splicing should also be inhibited upon,
heat shock. It follows that if the pre-mRNAs are not .
processed, heat shock proteins (or other proteins
synthesized from a cis- or trans-spliced mRNA)
would not be synthesized. Inconsistent with this idea
is the observation that heat shock protein synthesis
occurs after prolonged heat stresses (Snutch aqd
Baillie, 1983). There are three possibilitics to explain
these observations. First, some of the uncharacters
hsp genes may not have introns or be frans-spli
thereby accounting for the protein synthesis ob-
served. Second, the range of heat stresses tested by
Snutch and Baillie (1983) was not severe enough to
inhibit intron splicing in the nematode. Third, _the_
nematode may have developed a splicing mechanism
that is resistant to heat shock and is highly selective
for the heat shock gene pre-mRNAs upon heat stress-
Quch a svstem has evolved in trvpanosomes where all
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pre-mRNAs are frans-spliced normaliy during devel-
opment but only the hsp pre-mRNAs are trans-
spliced upon heat shock (Muhich and Boothroyd,
1989). In all three cases it should be noted that the
observed heat stress induced lethality is probably the
result of the other debilitating effects of heat stress
such as the observed lack of feeding or, possibly,
dehydration, .

The DNA immediately surrounding fsp-1 (i.e.
20-30 kilobases on ecither side) has accumulated a
greater number of nucleotide changes than regions
further upstream or downstream of hsp-1 as detected
in a comparison of the Asp- / gene region between two
strains of C. elegans. The accumulation of these
nucleotide changes could result if the region sur-
.. rounding Asp-] was always in an open configuration
c (e transcriptionally active) in the germline and,
L therefore, susceptible to DNA damage (Snutch and
Baillie, 1984). This proposal would imply that the
hsp-1 mRNA is stored in the oocyte as a maternal
mRNA or is necessary for the production of the
gametes.

The hsp-2ps gene is closely related to the hsp-1
gene. No transcripts have been detected for the
hsp-2ps gene. Cross-hybridization of the C. elegans
hsp-2ps gene to the genome of the closely related
nematode C. briggsae did not reveal the presence of
a hsp-2ps homolog in C. briggsae (Snutch er al,
1988). This raised the possibility that the hsp-2ps
gene, gained after the divergence of C. elegans and
C. briggsae, was either a pseudogene or a recent
gene duplication not expressed under the conditions
tested. A comparison of the DNA sequences of the
hsp-1 and hsp-2ps genes revealed that they shared
88% identity at the nucleotide level, Further analysis
demonstrated that the Asp-2ps gene, with respect to
hsp-1, was truncated missing the last third of the
hsp-1 gene, yet contained the first two introns and
part of the transcribed, untransiated sequence (but
not the trans-spliced leader sequence) and had several ,
mutations which disrupted the coding region. These
observations confirmed the identification of hsp-2ps
a5 a pseudogene of hsp- 7 (Heschl and Baillie, 1989a).
Based on the greater mutability of the hsp-I gene
region and the structure of hsp-2ps, we proposed that
the hsp-2ps gene was probably generated by transpo-
sition of a copy of the normal hsp-1 gene on chromo-

The hsp-3 gene is constitutively expressed and not
2€at inducible. Transcripts from the hsp-3 gene have
been detected throughout development being most
Sundant at the L1 larval stage (Snutch er al.,, 1988).
2% hsp-3 coding region is interrupted by three
lntron_S, Unexpectedly, we detected an identity to the
#SE in the 5 region of the Asp-3 gene (Heschl
M Baillie, 1989%). This would suggest that hsp-3
AEBL be heat inducible but heat inducibility was
=0 detected under the conditions tested (Snutch er
“ 1988). Characterization of hsp70C, the predicted
=3 gene product, revealed that hsp70C, with
PECt to hsp79A, had a long hydrophobic amino
"us which is characteristic of proteins imported
® the ER (Colman and Robinson, 1986; Verner

The hsp70 multigene family
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and Schatz, 1988). Hsp70C also had the carboxyl
terminal sequence KDEL (Lys-Asp-Glu-Leu) which
is characteristic of proteins retained in the ER
{(Pelham, 1989). We concluded {Hesch! and Bailije,
1989b) that hsp70C was closely related to the ER-
localized mammalian grp78 (glucose regulated
protein) also known as BiP (immunoglobulin heavy
chain binding protein). Expression of the mammalian
2rp78 is enhanced when glucose levels are low or if
calcium ionophores are present but not upon heat
shock (Lee, 1987). It will be interesting to determine
if expression of hsp-3 is enhanced upon starvation as
L2 larvae enter the dauer larvae developmental path-
way, a situation potentially analogous to glucose
starvation.

The Asp-4 mRNA is barely detectable under
normal growth conditions. Upon heat stress, synthe-
sis of the ssp-4 mRNA is enhanced as much as 50
times that of the control jevel (Snutch er al., 1988).
Characterization of the last half of hsp-4 revealed the
presence of at least two introns in the hsp-4 gene. The
hsp-4 gene product, hsp70D, is closely related to both
the hsp70C and grp78 proteins (our unpublished
results). However, the carboxyl terminus is HDEL
(His-Asp-Glu-Leu) instead of KDEL similar to the
S. cerevisige grp78 equivalent, KAR2 (Rose et al.,
1989; Normington et al., 1989). Like the polypeptide
KDEL, HDEL is important for the retention of
KAR?2? in the ER of yeast (Pelham, 1989). KARZ is
normally expressed at high levels during growth and
expression is further enhanced upon heat stress {Rose
et al., 1989; Normington et al., 1989). Assuming that
hsp70D is translocated into the ER as are 2rp78 and
KAR?2, then the situation in C. elegans appears to be
unique in that the nematode contains two grp78-like
genes, onc that is constitutively expressed and
one that is highly heat inducible. If we consider
S. cerevisige to more closely represent the ancestral
situation with the constitutively expressed, heat in-
ducible grp78-like gene, it would be interesting to
explore the apparent division of expression and prob-
able division of function of the gep78s as seen in the
nematode system and the apparent loss of a highly
heat inducible grp78 gene as seen in the mammalian
system. ' '

During the course of our characterization of the
hsp-3 gene, we compared the 5 regulatory region of
hsp-3 to the rat grp78 gene. If these two genes are
functionally similar as proposed then elements used
to mediate the expression of the grp78 homologs
should be conserved. In fact, such a conserved cle-
ment was detected (Heschi and Baillie, 1989b). The
corresponding element from the rat 2rp78 gene has
been shown to direct expression of the rat grp78
gene as well as to bind a putative regulatory
protein (Resendez et al.,1988). A comparison of the
C. elegans 5’ regulatory region was extended to
the regulatory region of the hsp-3 homolog from
C. briggsae. Similarly, if any elements are important
for the regulation of the hsp-3 homologs in
Caenorhabditis, these too should be conserved be-
tween these sister species. Several conserved elements
were detected including, but not limited to, the HSE,
the element identified in the rat/C. elegans compari-
son and several identities to SV40 and adenovirus
enhancers (Heschl and Baillie, 1990). The presence of




636

identities to mammalian viral enhancers in C. elegans
suggests that these gene regulatory elements are
relatively ancient and have either been recruited by
the mammalian viruses or there exists an unidentified
virus or viruses distantly related to the mammalian
viruses which can infect Caenorhabditis sp. With the
development of integrative transformation tech-
niques which ‘allow the correct expression of the
transformed genes (Fire, 1986; Fire and Waterston,
1989), the ability of the conserved elements to direct
expression of the Asp-3 genes can now be tested.

The HSP-6 subfamily

The hsp-6 gene is constitutively expressed and heat
inducible {Snutch et al., 1988). Scveral copies of the
HSE in the 5’ regulatory region were detected, consis-
tent with the heat inducibility of hsp-6. The first
two-thirds of the Asp-6 gene contains two introns.
Analysis of the predicted partial Asp-6 protein
product, hsp70F, with respect to hsp70A, revealed
the presence of an amphiphilic leader sequence rich in
serine and threonine (Heschl and Baillie, 1989b). This
is characteristic of leader sequences on proteins
imported into ' the mitochondria (Colman and
Robinson, 1986; Roise and Schatz, 1988; Verner and
Schatz, 1988). A comparison of hsp70F to known
hsp70-like proteins suggested that hsp70F was more
closely related to the prokaryotic hsp70 homolog
from Escherichia coli, dnaK, than known eukaryotic
hsp70s (Heschl and Baillie, 1989b). Subsequently, a
number of hsp70 proteins have been demonstrated to
be translocated into the mitochondria (Craig e al,
1989; Engman ef al., 1989; Leustek et al., 1989). Like
hsp70F, these proteins are more closely related to the
bacterial hsp70 homolog than eukaryotic hsp70s. The
close identity of these mitochandrial imported
proteins with the bacterial hsp70 homolog is not too
surprising since it is widely believed that mitochon-
dria arose through a symbiotic relationship between
bacteria and the primitive eukaryotic cell.

Perspectives

The isolafion of mutant eukaryotic hsp genes
has been done primarily in the unicellular organism
S. cerevisiae. In such a system, the effects of some
mutant genes may not be readily detectable. For
example, mutations in individual members of the
yeast hsp70 SSA subfamily have no apparent effect.
However, when two or more SSA mutations are
combined, there are visible effects on the growth or
viability of the yeast (Craig, 1989). The lack of
mutant heat shock protein genes in higher multicellu-
lar eukaryotes, such as Drosophila melanogasier, may
reflect the redundancy of the hsp70 genes in these
sytems. The relative simplicity of C. elegans offers an
alternative to S. cerevisige and the more complex
eukaryotic systems to combine both biochemistry
and genetics to study multigene families. The identifi-
cation of the hsp70 multigene family from C. elegans
represents the first step towards a genetic dissection
of the heat inducible and developmentally regulated
hsp70 genes in a multicellular eukaryote. There are
many questions concerning the regulation and the
roles of the hsp70s during development that can be
answered using the nematode. These include deter-
mining the potential maternal expression of the hsp-1
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