Summer 2019 - ENSC 810 G100

Statistical Signal Processing (3)

Class Number: 3054

Delivery Method: In Person

Overview

  • Course Times + Location:

    Mo, We 7:30 PM – 8:50 PM
    AQ 5015, Burnaby

  • Prerequisites:

    ENSC 802 and 429 or their equivalents.

Description

CALENDAR DESCRIPTION:

Processing techniques for continuous and discrete signals with initially unknown or time-varying characteristics. Parameter estimation; Bayes, MAP, maximum likelihood, least squares the Cramer-Rao bound. Linear estimation, prediction, power spectrum estimation, lattice filters. Adaptive filtering by LMS and recursive least squares. Kalman filtering. Eigenmethods for spectral estimation. Implementation issues and numerical methods of computation are considered throughout.

Graduate Studies Notes:

Important dates and deadlines for graduate students are found here: http://www.sfu.ca/dean-gradstudies/current/important_dates/guidelines.html. The deadline to drop a course with a 100% refund is the end of week 2. The deadline to drop with no notation on your transcript is the end of week 3.

Registrar Notes:

SFU’s Academic Integrity web site http://www.sfu.ca/students/academicintegrity.html is filled with information on what is meant by academic dishonesty, where you can find resources to help with your studies and the consequences of cheating.  Check out the site for more information and videos that help explain the issues in plain English.

Each student is responsible for his or her conduct as it affects the University community.  Academic dishonesty, in whatever form, is ultimately destructive of the values of the University. Furthermore, it is unfair and discouraging to the majority of students who pursue their studies honestly. Scholarly integrity is required of all members of the University. http://www.sfu.ca/policies/gazette/student/s10-01.html

ACADEMIC INTEGRITY: YOUR WORK, YOUR SUCCESS