Spring 2022 - CMPT 726 G200

Machine Learning (3)

Class Number: 5612

Delivery Method: In Person

Overview

  • Course Times + Location:

    We 5:30 PM – 7:20 PM
    SWH 10081, Burnaby

    Fr 5:30 PM – 6:20 PM
    SWH 10081, Burnaby

  • Exam Times + Location:

    Apr 22, 2022
    7:00 PM – 10:00 PM
    AQ 3181, Burnaby

Description

CALENDAR DESCRIPTION:

Machine Learning is the study of computer algorithms that improve automatically through experience. Provides students who conduct research in machine learning, or use it in their research, with a grounding in both the theoretical justification for, and practical application of, machine learning algorithms. Covers techniques in supervised and unsupervised learning, the graphical model formalism, and algorithms for combining models. Students who have taken CMPT 882 (Machine Learning) in 2007 or earlier may not take CMPT 726 for further credit.

COURSE DETAILS:

Machine learning is the study of computer algorithms that improve automatically through experience, which play an increasingly important role in artificial intelligence, computer science and beyond. The goal of this course is to introduce students to machine learning, starting from the foundations and gradually building up to modern techniques. Students in the course will learn about the theoretical underpinnings, modern applications and software tools for applying deep learning. This course is intended to be an introductory course for students interested in conducting research in machine learning or applying machine learning, and should prepare students for more advanced courses, such as CMPT 727 and CMPT 728. No previous knowledge of machine learning is assumed, but students are expected to have solid background in calculus, linear algebra, probability and programming using Python.

Topics

  • Mathematical foundations: review of linear algebra, multivariate calculus and probability
  • (Generalized) linear models: linear regression, ridge regression, logistic regression
  • Non-linear models: support vector machines, neural networks, k-nearest neighbours
  • Regression, binary classification, multinomial classification
  • Optimization: gradient descent, stochastic gradient descent, Lagrangian duality

Grading

NOTES:

The course grade will be based on homework assignments and exam.

Materials

MATERIALS + SUPPLIES:

Reference Books:
Machine Learning: A Probabilistic Perspective, Kevin P. Murphy, MIT Press, 2012, 9780262018029

The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani, and Jerome Friedman, Springer-Verlag, 2009, 9780387848570

All of Statistics, Larry Wasserman, Springer, 2010, 9781441923226

Pattern Recognition and Machine Learning, Christopher M. Bishop, Springer, 2006, 9780387310732

Machine Learning, Tom Mitchell, McGraw Hill, 1997, 9780070428072

Graduate Studies Notes:

Important dates and deadlines for graduate students are found here: http://www.sfu.ca/dean-gradstudies/current/important_dates/guidelines.html. The deadline to drop a course with a 100% refund is the end of week 2. The deadline to drop with no notation on your transcript is the end of week 3.

Registrar Notes:

ACADEMIC INTEGRITY: YOUR WORK, YOUR SUCCESS

SFU’s Academic Integrity web site http://www.sfu.ca/students/academicintegrity.html is filled with information on what is meant by academic dishonesty, where you can find resources to help with your studies and the consequences of cheating.  Check out the site for more information and videos that help explain the issues in plain English.

Each student is responsible for his or her conduct as it affects the University community.  Academic dishonesty, in whatever form, is ultimately destructive of the values of the University. Furthermore, it is unfair and discouraging to the majority of students who pursue their studies honestly. Scholarly integrity is required of all members of the University. http://www.sfu.ca/policies/gazette/student/s10-01.html

TEACHING AT SFU IN SPRING 2022

Teaching at SFU in spring 2022 will involve primarily in-person instruction, with safety plans in place.  Some courses will still be offered through remote methods, and if so, this will be clearly identified in the schedule of classes.  You will also know at enrollment whether remote course components will be “live” (synchronous) or at your own pace (asynchronous).

Enrolling in a course acknowledges that you are able to attend in whatever format is required.  You should not enroll in a course that is in-person if you are not able to return to campus, and should be aware that remote study may entail different modes of learning, interaction with your instructor, and ways of getting feedback on your work than may be the case for in-person classes.

Students with hidden or visible disabilities who may need class or exam accommodations, including in the context of remote learning, are advised to register with the SFU Centre for Accessible Learning (caladmin@sfu.ca or 778-782-3112) as early as possible in order to prepare for the spring 2022 term.