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“Nothing that is worth knowing can be taught.”

 Oscar Wilde
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Artificial Neural NetworksArtificial Neural Networks

• Analogy to biological neural systems, the 
most robust learning systems we know.

• Attempt to:
– Understand natural biological systems through 

computational modeling.
– Model intelligent behavior as an “emergent” 

property of a large number of simple units rather 
than from explicitly encoded symbolic rules and 
algorithms.

Artificial neural networks are the 
paradigm of connectionist systems 
(connectionism vs. symbolism)
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Artificial Neural NetworkArtificial Neural Network

• While there are many types of artificial 
neural networks (ANN), we will focus on 
three kinds (in order of complexity):
– Perceptron: Initial algorithm for learning 

simple neural networks (single layer) 
developed in the 1950’s.

– Multilayer feedfoward networks: More 
complex algorithm for learning multi-layer 
neural networks developed in the 1980’s.

– Self organising maps: clustering and 
feature similarities topological 
representation

We will start by looking at what they 
have in common: the artificial neuron
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Real NeuronsReal Neurons

• Cell structures
– Cell body
– Dendrites
– Axon
– Synaptic 

terminals
• Synapses change 

size and strength 
with experience.

• Human brain has 
about 1011 neurons 
with an average of 
104 connections 
each.
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Artificial NeuronArtificial Neuron
• An artificial neuron:

∑

x1

x2

xn

w1
w2

wn

yf

Inputs Weights Sum Activation 
function Output

y= f ∑
i=1

n

wi× xi−

Hard Limiter: Sigmoid (logistic):

f x={ 1 if x0
−1 if x≤0 f x= 1

1ex



Offset
(threshold)

x x

f x f x

1

−1
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PerceptronPerceptron

• The Perceptron is made of one neuron 
with a hard limiter activation function:

• The Perceptron can only decide on two classes: 
A or B, good or bad, hot or cold, ...

• By using a different “squashing function” a 
more smooth output gain be obtained

∑
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PerceptronPerceptron

 Supervisor

Learner

 Desired output:

   Output:

Error:

In
pu

ts

Supervised learning:

• The error being a function of the output is also a function 
of all the weights: learning is done by updating the weights
• The Perceptron learning rule:

wi= y− ytarget xi

Learning rate (e.g. 0.05)

Error for that example

y− ytarget

ytarget

y

• If output is correct do nothing.
• If output is too high, lower 

weights on active inputs
• If output is low, increase weights 

on active inputs (i.e. <> 0)
Input for that weight
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Perceptron AlgorithmPerceptron Algorithm

1 ) Set wi
t 0  1≤i≤n  and   to  small random values

2 ) Present a new input instance: x1
t , x2

t , ... , xn
t

3) Calculate the actual Output: yt= f ∑
i=1

n

wi
t× xi

t−

4 ) Present the desired output: ytarget
t

5) Update the weights: wi
t1=wi

t[ yt− ytarget
t × xi

t]

6 ) If Termination condition not met: go to step 2 

Incremental (or stochastic) gradient descent:

wi

 IAT-811 Metacreation 30

Perceptron AlgorithmPerceptron Algorithm

• Used for supervised learning: 
– One pass through the training set is called an 

epoch: the loop is repeated as many times as 
there is examples in the training set

– Condition Termination:
• Epochs are repeated as long as there is improvement 

(over a number of them)
• Until all training data are correctly classified
• A limit is reached: 

– A fixed time (e.g. 5 min)
– A fixed number of epoch (e.g. 600)

– The standard gradient descent update the weights 
only once per epoch (using the sum of the errors on 
all the data of the training set)

What can be learned by a Perceptron?
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Representational PowerRepresentational Power

• Since the Perceptron unit implements a linear 
(combination) function, it is searching for a 
linear separator that discriminates the classes.

This is the equation of a line 
(or hyperplane in 
n-dimensional space)x1

x2

w1 x1w2 x2

x2−
w1
w2

x1

w2

w2 x2−w1 x1A

x2=−
w1
w2

x1

w2
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Concept Perceptron Cannot LearnConcept Perceptron Cannot Learn

• Cannot learn functions that are not linearly 
separable: exclusive-or, or parity function. 

• But can provide a good approximation 
sometimes!

o3

o2

??+1

0
1

–

+–



  

 

 IAT-811 Metacreation 33

Perceptron: Error functionPerceptron: Error function

E  w=1
2∑d∈D

 y− ytarget
2

Weight vector 
(hypothesis = what want want to learn)

Error function

For all examples

Avoids that negative 
and positive errors
annihilate each others

Error

– The learning technique is called gradient descent 
because it going to minimise the error made by 
following the slope of the error curve, i.e. the 
gradient

– This error function has a single minima
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Gradiant Descent and the Delta RuleGradiant Descent and the Delta Rule
• Vector derivative are 

called gradient
• The negative of this  

specifies the steepest
decrease in E

Hypothesis space
(all possible weight combinations)

The idea is to 
minimise the error

∂E
∂wi

=1
2 ∑d∈D

∂
∂wi

 y− ytarget
2

∂E
∂wi

=∑
d ∈D

 y− ytarget−xid
wi=∑

d∈D
 y− ytarget xid
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Parceptron: learning rulesParceptron: learning rules
• Different Error functions will give different learning 

rules (computed with the same principle of gradient 
descent):

• The true gradient rule:
– Also called standard gradient 

descent
– Update the weights according 

to all training examples at once
• The Delta rule:

– Also called
• LMS (least mean square)
• Adaline rule
• Widrow-Hoff rule

– Incremental gradient descent 
or stochastic gradient descent

– Update the weights after each 
example

wi=∑
d∈D

 y− ytarget xid

E  w=1
2∑d∈D

 y− ytarget
2

E  w=1
2
y− ytarget 

2

wi= y− ytarget xid
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Perceptron PerformancesPerceptron Performances

• Obviously, a system cannot learn concepts it 
cannot represent.

• In practice, it converges fairly quickly for 
linearly separable data.

• Can effectively use even incompletely 
converged results when only a few outliers 
are misclassified.

• Experimentally, the Perceptron does quite 
well on many benchmark data sets. 

• Due to their nature, ANN are quit resistant to 
noise in the data: a small difference on one 
or several inputs does not give a big 
difference on the output
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• There is a plethora of theoretical results:
– Perceptron convergence theorem: If the 

data is linearly separable and therefore a set 
of weights exist that are consistent with the 
data, then the Perceptron algorithm will 
eventually converge to a consistent set of 
weights.

– Perceptron cycling theorem: If the data is 
not linearly separable, the Perceptron 
algorithm will eventually repeat a set of 
weights and threshold at the end of some 
epoch and therefore enter an infinite loop.

• By checking for repeated weights+threshold, 
one can guarantee termination with either a 
positive or negative result.

Perceptron PerformancesPerceptron Performances
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Multi-Layer feedforwards NetworksMulti-Layer feedforwards Networks

• A typical multi-layer network consists of an input layer 
(not real neurons), a hidden and an output layer, each 
fully connected to the next, with activation being fed 
forward in the network

• Use Sigmoid “logistic” activation function

Ac
tiv

at
io

n

Inputs (not real artificial neurons,
but the links have weights)x1 x2    .... xn

Hiden layer

Output Layer

Outputsy1  ... ym

Input from unit i into unit j is noted x ji

x21

Weight from unit i to unit j is noted w ji

w12

w3n
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Error Backpropagation AlgorithmError Backpropagation Algorithm

2 ) Present a new input instance: x1
t , x2

t , ... , xn
t

3 ) Calculate the actual outputs: y1
t , y2

t , ... , ym
t

4) Present the desired output: ytarget , 1
t , ... , ytarget , m

t

5) Update the weights: 

6 ) If Termination condition not met: go to step 2 

1 ) Set all weight and offset to  small random values

w ji
t1=w ji

t w ji
t  , where: wji

t = j x ji

For output units k : k=yk 1−yk  ytarget , k−yk 

For hidden units h : h= yh 1− yh ∑
k∈outputs

wkhk

The stochastic gradient descent version:
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Error Backpropagation: step 5.1Error Backpropagation: step 5.1

• First calculate error of output units and use 
this to change the top layer of weights.

output

hidden

input

Example:
 
Current output: yk=0.2
 

Correct output: y
target,k

=1.0
 

Error δk = yk(1–yk)(ytarget,k
-yk)

 

 0.2(1–0.2)(1–0.2)=+0.128

Update weights for each hiden unit i:

wki
t1=wki

t wki
t  , where: wki

t =k xki

Learning rate

Activation/input received
Error detail: k= yk 1− yk ytarget ,k− yk 

Activation/input received
Usual “error”/deviation

Derivative of the sigmoid function
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Error Backpropagation: step 5.2Error Backpropagation: step 5.2

• Next calculate error for hidden units based 
on errors on the output units it feeds into.

output

hidden

input

Error: h= yh1− yh ∑
k∈outputs

wkhk

Sum of the errors of the output units (for 
wich we get the target values) pondered be 
the weights of the linksh

k1

wk1 h

k 2
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Error Backpropagation: setp 5.3Error Backpropagation: setp 5.3

• Finally update bottom layer of weights 
based on errors calculated for hidden units.

output

hidden

input

Update weights into h

whi
t1=whi

t whi
t  , where: whi

t = j xhi

h

Repeat 5.2 and 5.3 for every hidden units
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Termination ConditionsTermination Conditions

• Various termination conditions can be used:
– Fixed number of iteration (thousands)
– Once the error over all the training examples falls 

bellow some threshold
– Once the error on a separate training set meets some 

criterion 
• Running too many epochs can result in over-fitting.

  

• Possible solution: keep a hold-out validation set and test 
accuracy on it after each sequence of 100 epoch. Stop training 
when additional epochs actually increase validation error.

er
ro

r

on training data

on test data

0 # training epochs
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Comments on Training AlgorithmComments on Training Algorithm

• Again, it is doing a gradient descent in the error space
• One crucial difference with the Perceptron is that the 

error space can have multiple local minima
• No guarantee to converge to zero training error, may 

converge to local optima or oscillate indefinitely.
• However, in practice, it does converge to low error for 

many large networks on real data.
• Many epochs (thousands) may be required: hours or 

days of training for large networks.
• To avoid local-minima problems: run several trials 

starting with different random weights (random 
restarts).
– Take results of trial with lowest training set error.
– Build a committee of results from multiple trials (possibly 

weighting votes by training set accuracy).
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Representational PowerRepresentational Power

• Multi-layer networks can represent arbitrary functions
• The weights determine the function computed. Given an 

arbitrary number of hidden units, any boolean function 
can be computed with a single hidden layer.

• Boolean functions: Any boolean function can be 
represented by a two-layer network with sufficient 
hidden units.

• Continuous functions: Any bounded continuous 
function can be approximated with arbitrarily small 
error by a two-layer network.
– Sigmoid functions can act as a set of basis 

functions for composing more complex 
functions, like sine waves in Fourier analysis.

• Arbitrary function: Any function can be 
approximated to arbitrary accuracy by a three-layer 
network.
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Example: Learned XOR NetworkExample: Learned XOR Network

3.11

−7.386.96

−5.24

−3.6
−3.58

−5.57
−5.74

−2.03A

X Y

B

Hidden Unit A represents: ¬(X ∧ Y)
Hidden Unit B represents: ¬(X ∨ Y)
Output O represents:  A ∧ ¬B = ¬(X ∧ Y) ∧ (X ∨ Y)
                                                 = X ⊕ Y

O
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Successful ApplicationsSuccessful Applications

• Pattern recognition: speech recognition 
(DragonTalk), text to speech (NetTalk),  
handwriting recognition, face recognition 
(identity, orientation, ...), fraud detection, ...

• Financial Applications
– HNC Software (eventually bought by Fair Isaac)

• Chemical Plant Control
– Pavillion Technologies

• Automated Vehicles: ALVINN, ...
• Game Playing

– Neurogammon
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Self Organising Maps Self Organising Maps (Pr. Teuvo Kohonen)(Pr. Teuvo Kohonen)

• SOMs aim to associate each 
input vector to one of the
output (neurons) on a map
topologically orga-
nised so to reflect 
features proximity 

• Unsupervised learning
• Each input is connected to 

every output neurons
• Output neurons are not 

connected together, but a notion 
of neighborood maps their 
topological (i.e. spatial) organisation 
to the inputs' features similarity

• While there are several variants, we present the basic version
• A SOM acts like a classifier in which the number of 

classes if fixed (m neurons) and are topologically 
disposed but there nature/features is not predetermined

•
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Learning algorithmLearning algorithm

2 ) Present a new input instance: x1
t , x2

t , ... , xn
t

3 ) Calculate distance to all neurons: d j=∑
i=1

n

xi
t−w ji

t 2

5 ) Update the weights of j*  and the neighborhood NE j*
t

6 ) Repeat steps 2-5 a fixed number of times

1 ) Set all weights from n inputs node to m neurons to

w ji
t1=w ji

t t xi
t−w ji

t   , for j∈NE j*
t  and 1≤i≤n

   random values and set the initial neighborhood 

4 ) Select the node j* that minimize the distance d j

   NE j
0  to large values

t  is a learning rate (or gain) that decrease with time
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• Visualisation: each unit is associated to a pixel (or a square) and 
represents the last input/instance classified (i.e. a color)

• 25*25 units organised as a grid (each unit represents the weights 
associated with it and the elements that have been assigned to it)

• 3 inputs (Reg, Green, Blue): 3*25*25 links (i.e. Weights), here each weight 
represents a component (R, G or B)

• Algo:
1. Initialise the weights, the neighborhood

and the learning rate:
2. Get an input, say green (0,6,0)
3. Calculate the distance to each node (using Euclidian distance): 

●  d
Light green

 = Sqrt((0-3)^2+(6-6)^2+(0-3)^2) = 4.24
●  d

red   
     = Sqrt((0-6)^2+(6-0)^2+(0-0)^2) =  8.49

5. Learning: The winning weights are rewarded with becoming more like the 
input vector.  The neighbours' weights also become more like the input vector.

6. Decrease the size of the neighborhood and decrease the learning rate

Example: colorsExample: colors

Random weights
=

random colors

4.Light green is selected

Initially 1DEMO
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Remarks on SOMRemarks on SOM

• SOMs produce a low-dimensional (typically two 
dimensional), discretized representation of the 
input space of the training samples, called a map. 

• The map seeks to preserve the topological 
properties of the input space.

• SOMs accomplish two things:
– They reduce dimensions: in our example, the inputs 

were three dimensions and there were “number of 
input” of them and the output is only two 
dimensions 

– They display similarities: in our example, the 
similarities are obvious!

SOMs are useful for visualizing low-dimensional 
views of high-dimensional data 
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Issues in Neural NetsIssues in Neural Nets

• There is a lot (lot) more to be seen!
– More efficient training methods:

• Quickprop
• Conjugate gradient (exploits 2nd derivative)

– Learning the proper network architecture:
• Grow network until able to fit data: Cascade 

Correlation, Upstart, ..
• Shrink large network until unable to fit data

– Recurrent networks that use feedback and can 
learn finite state machines with “backpropagation 
through time.”

– More biologically plausible learning algorithms 
based on Hebbian learning (“fire together, wire 
together”).

• Many applications to metacreation!
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“The only real mistake is the one from which we learn nothing.” 

 John Powell




