

Philippe Pasquier, January 2008IAT-811 Metacreation 21

“Nothing that is worth knowing can be taught.”

 Oscar Wilde

 IAT-811 Metacreation 23

Artificial Neural NetworksArtificial Neural Networks

• Analogy to biological neural systems, the
most robust learning systems we know.

• Attempt to:
– Understand natural biological systems through

computational modeling.
– Model intelligent behavior as an “emergent”

property of a large number of simple units rather
than from explicitly encoded symbolic rules and
algorithms.

Artificial neural networks are the
paradigm of connectionist systems
(connectionism vs. symbolism)

 IAT-811 Metacreation 24

Artificial Neural NetworkArtificial Neural Network

• While there are many types of artificial
neural networks (ANN), we will focus on
three kinds (in order of complexity):
– Perceptron: Initial algorithm for learning

simple neural networks (single layer)
developed in the 1950’s.

– Multilayer feedfoward networks: More
complex algorithm for learning multi-layer
neural networks developed in the 1980’s.

– Self organising maps: clustering and
feature similarities topological
representation

We will start by looking at what they
have in common: the artificial neuron

 IAT-811 Metacreation 25

Real NeuronsReal Neurons

• Cell structures
– Cell body
– Dendrites
– Axon
– Synaptic

terminals
• Synapses change

size and strength
with experience.

• Human brain has
about 1011 neurons
with an average of
104 connections
each.

 IAT-811 Metacreation 26

Artificial NeuronArtificial Neuron
• An artificial neuron:

∑

x1

x2

xn

w1
w2

wn

yf

Inputs Weights Sum Activation
function Output

y= f ∑
i=1

n

wi× xi−

Hard Limiter: Sigmoid (logistic):

f x={ 1 if x0
−1 if x≤0 f x= 1

1ex



Offset
(threshold)

x x

f x f x

1

−1

1

 IAT-811 Metacreation 27

PerceptronPerceptron

• The Perceptron is made of one neuron
with a hard limiter activation function:

• The Perceptron can only decide on two classes:
A or B, good or bad, hot or cold, ...

• By using a different “squashing function” a
more smooth output gain be obtained

∑

x1

x2

xn

w1
w2

wn

y


x

f x

1

−1

 IAT-811 Metacreation 28

PerceptronPerceptron

 Supervisor

Learner

 Desired output:

 Output:

Error:

In
pu

ts

Supervised learning:

• The error being a function of the output is also a function
of all the weights: learning is done by updating the weights
• The Perceptron learning rule:

wi= y− ytarget xi

Learning rate (e.g. 0.05)

Error for that example

y− ytarget

ytarget

y

• If output is correct do nothing.
• If output is too high, lower

weights on active inputs
• If output is low, increase weights

on active inputs (i.e. <> 0)
Input for that weight

 IAT-811 Metacreation 29

Perceptron AlgorithmPerceptron Algorithm

1) Set wi
t 0 1≤i≤n and  to small random values

2) Present a new input instance: x1
t , x2

t , ... , xn
t

3) Calculate the actual Output: yt= f ∑
i=1

n

wi
t× xi

t−

4) Present the desired output: ytarget
t

5) Update the weights: wi
t1=wi

t[ yt− ytarget
t × xi

t]

6) If Termination condition not met: go to step 2

Incremental (or stochastic) gradient descent:

wi

 IAT-811 Metacreation 30

Perceptron AlgorithmPerceptron Algorithm

• Used for supervised learning:
– One pass through the training set is called an

epoch: the loop is repeated as many times as
there is examples in the training set

– Condition Termination:
• Epochs are repeated as long as there is improvement

(over a number of them)
• Until all training data are correctly classified
• A limit is reached:

– A fixed time (e.g. 5 min)
– A fixed number of epoch (e.g. 600)

– The standard gradient descent update the weights
only once per epoch (using the sum of the errors on
all the data of the training set)

What can be learned by a Perceptron?

 IAT-811 Metacreation 31

Representational PowerRepresentational Power

• Since the Perceptron unit implements a linear
(combination) function, it is searching for a
linear separator that discriminates the classes.

This is the equation of a line
(or hyperplane in
n-dimensional space)x1

x2

w1 x1w2 x2

x2−
w1
w2

x1

w2

w2 x2−w1 x1A

x2=−
w1
w2

x1

w2

 IAT-811 Metacreation 32

Concept Perceptron Cannot LearnConcept Perceptron Cannot Learn

• Cannot learn functions that are not linearly
separable: exclusive-or, or parity function.

• But can provide a good approximation
sometimes!

o3

o2

??+1

0
1

–

+–

 IAT-811 Metacreation 33

Perceptron: Error functionPerceptron: Error function

E  w=1
2∑d∈D

 y− ytarget
2

Weight vector
(hypothesis = what want want to learn)

Error function

For all examples

Avoids that negative
and positive errors
annihilate each others

Error

– The learning technique is called gradient descent
because it going to minimise the error made by
following the slope of the error curve, i.e. the
gradient

– This error function has a single minima

 IAT-811 Metacreation 34

Gradiant Descent and the Delta RuleGradiant Descent and the Delta Rule
• Vector derivative are

called gradient
• The negative of this

specifies the steepest
decrease in E

Hypothesis space
(all possible weight combinations)

The idea is to
minimise the error

∂E
∂wi

=1
2 ∑d∈D

∂
∂wi

 y− ytarget
2

∂E
∂wi

=∑
d ∈D

 y− ytarget−xid
wi=∑

d∈D
 y− ytarget xid

 IAT-811 Metacreation 35

Parceptron: learning rulesParceptron: learning rules
• Different Error functions will give different learning

rules (computed with the same principle of gradient
descent):

• The true gradient rule:
– Also called standard gradient

descent
– Update the weights according

to all training examples at once
• The Delta rule:

– Also called
• LMS (least mean square)
• Adaline rule
• Widrow-Hoff rule

– Incremental gradient descent
or stochastic gradient descent

– Update the weights after each
example

wi=∑
d∈D

 y− ytarget xid

E  w=1
2∑d∈D

 y− ytarget
2

E  w=1
2
y− ytarget 

2

wi= y− ytarget xid

 IAT-811 Metacreation 36

Perceptron PerformancesPerceptron Performances

• Obviously, a system cannot learn concepts it
cannot represent.

• In practice, it converges fairly quickly for
linearly separable data.

• Can effectively use even incompletely
converged results when only a few outliers
are misclassified.

• Experimentally, the Perceptron does quite
well on many benchmark data sets.

• Due to their nature, ANN are quit resistant to
noise in the data: a small difference on one
or several inputs does not give a big
difference on the output

 IAT-811 Metacreation 37

• There is a plethora of theoretical results:
– Perceptron convergence theorem: If the

data is linearly separable and therefore a set
of weights exist that are consistent with the
data, then the Perceptron algorithm will
eventually converge to a consistent set of
weights.

– Perceptron cycling theorem: If the data is
not linearly separable, the Perceptron
algorithm will eventually repeat a set of
weights and threshold at the end of some
epoch and therefore enter an infinite loop.

• By checking for repeated weights+threshold,
one can guarantee termination with either a
positive or negative result.

Perceptron PerformancesPerceptron Performances

 IAT-811 Metacreation 38

Multi-Layer feedforwards NetworksMulti-Layer feedforwards Networks

• A typical multi-layer network consists of an input layer
(not real neurons), a hidden and an output layer, each
fully connected to the next, with activation being fed
forward in the network

• Use Sigmoid “logistic” activation function

Ac
tiv

at
io

n

Inputs (not real artificial neurons,
but the links have weights)x1 x2 xn

Hiden layer

Output Layer

Outputsy1 ... ym

Input from unit i into unit j is noted x ji

x21

Weight from unit i to unit j is noted w ji

w12

w3n

 IAT-811 Metacreation 39

Error Backpropagation AlgorithmError Backpropagation Algorithm

2) Present a new input instance: x1
t , x2

t , ... , xn
t

3) Calculate the actual outputs: y1
t , y2

t , ... , ym
t

4) Present the desired output: ytarget , 1
t , ... , ytarget , m

t

5) Update the weights:

6) If Termination condition not met: go to step 2

1) Set all weight and offset to small random values

w ji
t1=w ji

t w ji
t , where: wji

t = j x ji

For output units k : k=yk 1−yk  ytarget , k−yk 

For hidden units h : h= yh 1− yh ∑
k∈outputs

wkhk

The stochastic gradient descent version:

 IAT-811 Metacreation 40

Error Backpropagation: step 5.1Error Backpropagation: step 5.1

• First calculate error of output units and use
this to change the top layer of weights.

output

hidden

input

Example:

Current output: yk=0.2

Correct output: y
target,k

=1.0

Error δk = yk(1–yk)(ytarget,k
-yk)

 0.2(1–0.2)(1–0.2)=+0.128

Update weights for each hiden unit i:

wki
t1=wki

t wki
t , where: wki

t =k xki

Learning rate

Activation/input received
Error detail: k= yk 1− yk ytarget ,k− yk 

Activation/input received
Usual “error”/deviation

Derivative of the sigmoid function

 IAT-811 Metacreation 41

Error Backpropagation: step 5.2Error Backpropagation: step 5.2

• Next calculate error for hidden units based
on errors on the output units it feeds into.

output

hidden

input

Error: h= yh1− yh ∑
k∈outputs

wkhk

Sum of the errors of the output units (for
wich we get the target values) pondered be
the weights of the linksh

k1

wk1 h

k 2

 IAT-811 Metacreation 42

Error Backpropagation: setp 5.3Error Backpropagation: setp 5.3

• Finally update bottom layer of weights
based on errors calculated for hidden units.

output

hidden

input

Update weights into h

whi
t1=whi

t whi
t , where: whi

t = j xhi

h

Repeat 5.2 and 5.3 for every hidden units

 IAT-811 Metacreation 43

Termination ConditionsTermination Conditions

• Various termination conditions can be used:
– Fixed number of iteration (thousands)
– Once the error over all the training examples falls

bellow some threshold
– Once the error on a separate training set meets some

criterion
• Running too many epochs can result in over-fitting.

• Possible solution: keep a hold-out validation set and test
accuracy on it after each sequence of 100 epoch. Stop training
when additional epochs actually increase validation error.

er
ro

r

on training data

on test data

0 # training epochs

 IAT-811 Metacreation 44

Comments on Training AlgorithmComments on Training Algorithm

• Again, it is doing a gradient descent in the error space
• One crucial difference with the Perceptron is that the

error space can have multiple local minima
• No guarantee to converge to zero training error, may

converge to local optima or oscillate indefinitely.
• However, in practice, it does converge to low error for

many large networks on real data.
• Many epochs (thousands) may be required: hours or

days of training for large networks.
• To avoid local-minima problems: run several trials

starting with different random weights (random
restarts).
– Take results of trial with lowest training set error.
– Build a committee of results from multiple trials (possibly

weighting votes by training set accuracy).

 IAT-811 Metacreation 45

Representational PowerRepresentational Power

• Multi-layer networks can represent arbitrary functions
• The weights determine the function computed. Given an

arbitrary number of hidden units, any boolean function
can be computed with a single hidden layer.

• Boolean functions: Any boolean function can be
represented by a two-layer network with sufficient
hidden units.

• Continuous functions: Any bounded continuous
function can be approximated with arbitrarily small
error by a two-layer network.
– Sigmoid functions can act as a set of basis

functions for composing more complex
functions, like sine waves in Fourier analysis.

• Arbitrary function: Any function can be
approximated to arbitrary accuracy by a three-layer
network.

 IAT-811 Metacreation 46

Example: Learned XOR NetworkExample: Learned XOR Network

3.11

−7.386.96

−5.24

−3.6
−3.58

−5.57
−5.74

−2.03A

X Y

B

Hidden Unit A represents: ¬(X ∧ Y)
Hidden Unit B represents: ¬(X ∨ Y)
Output O represents: A ∧ ¬B = ¬(X ∧ Y) ∧ (X ∨ Y)
 = X ⊕ Y

O

 IAT-811 Metacreation 47

Successful ApplicationsSuccessful Applications

• Pattern recognition: speech recognition
(DragonTalk), text to speech (NetTalk),
handwriting recognition, face recognition
(identity, orientation, ...), fraud detection, ...

• Financial Applications
– HNC Software (eventually bought by Fair Isaac)

• Chemical Plant Control
– Pavillion Technologies

• Automated Vehicles: ALVINN, ...
• Game Playing

– Neurogammon

 IAT-811 Metacreation 48

 IAT-811 Metacreation 49

Self Organising Maps Self Organising Maps (Pr. Teuvo Kohonen)(Pr. Teuvo Kohonen)

• SOMs aim to associate each
input vector to one of the
output (neurons) on a map
topologically orga-
nised so to reflect
features proximity

• Unsupervised learning
• Each input is connected to

every output neurons
• Output neurons are not

connected together, but a notion
of neighborood maps their
topological (i.e. spatial) organisation
to the inputs' features similarity

• While there are several variants, we present the basic version
• A SOM acts like a classifier in which the number of

classes if fixed (m neurons) and are topologically
disposed but there nature/features is not predetermined

•

 IAT-811 Metacreation 50

Learning algorithmLearning algorithm

2) Present a new input instance: x1
t , x2

t , ... , xn
t

3) Calculate distance to all neurons: d j=∑
i=1

n

xi
t−w ji

t 2

5) Update the weights of j* and the neighborhood NE j*
t

6) Repeat steps 2-5 a fixed number of times

1) Set all weights from n inputs node to m neurons to

w ji
t1=w ji

t t xi
t−w ji

t  , for j∈NE j*
t and 1≤i≤n

 random values and set the initial neighborhood

4) Select the node j* that minimize the distance d j

 NE j
0 to large values

t is a learning rate (or gain) that decrease with time

 IAT-811 Metacreation 51

• Visualisation: each unit is associated to a pixel (or a square) and
represents the last input/instance classified (i.e. a color)

• 25*25 units organised as a grid (each unit represents the weights
associated with it and the elements that have been assigned to it)

• 3 inputs (Reg, Green, Blue): 3*25*25 links (i.e. Weights), here each weight
represents a component (R, G or B)

• Algo:
1. Initialise the weights, the neighborhood

and the learning rate:
2. Get an input, say green (0,6,0)
3. Calculate the distance to each node (using Euclidian distance):

● d
Light green

 = Sqrt((0-3)^2+(6-6)^2+(0-3)^2) = 4.24
● d

red
 = Sqrt((0-6)^2+(6-0)^2+(0-0)^2) = 8.49

5. Learning: The winning weights are rewarded with becoming more like the
input vector. The neighbours' weights also become more like the input vector.

6. Decrease the size of the neighborhood and decrease the learning rate

Example: colorsExample: colors

Random weights
=

random colors

4.Light green is selected

Initially 1DEMO

 IAT-811 Metacreation 52

Remarks on SOMRemarks on SOM

• SOMs produce a low-dimensional (typically two
dimensional), discretized representation of the
input space of the training samples, called a map.

• The map seeks to preserve the topological
properties of the input space.

• SOMs accomplish two things:
– They reduce dimensions: in our example, the inputs

were three dimensions and there were “number of
input” of them and the output is only two
dimensions

– They display similarities: in our example, the
similarities are obvious!

SOMs are useful for visualizing low-dimensional
views of high-dimensional data

 IAT-811 Metacreation 53

Issues in Neural NetsIssues in Neural Nets

• There is a lot (lot) more to be seen!
– More efficient training methods:

• Quickprop
• Conjugate gradient (exploits 2nd derivative)

– Learning the proper network architecture:
• Grow network until able to fit data: Cascade

Correlation, Upstart, ..
• Shrink large network until unable to fit data

– Recurrent networks that use feedback and can
learn finite state machines with “backpropagation
through time.”

– More biologically plausible learning algorithms
based on Hebbian learning (“fire together, wire
together”).

• Many applications to metacreation!

Philippe Pasquier, January 2008IAT-811 Metacreation 54

“The only real mistake is the one from which we learn nothing.”

 John Powell

