

Introduction

- Instance-based learning techniques (aka case-based or memory-based or non-parametric) construc a general, explicit description of the target function by simply storing the training examples.
- It is a family of techniques: - Nearest neighbor
- Instances are points in
- Locally weighted regression an Euclidean space
- Symbolic representation techniques
- · Refered to as lazy learning because the processing is delayed until a new instance must be classified.
- The advantage is that it estimate the target function locally and differently for each instance rather than for the entire space

IAT-811 Metacreation 2

K-Nearest Neighbor Algorithm• Training algorythm:

 - Memorize each training example $\langle x, f(x) \rangle$ • Classification algorythm:

 - Given the request, x_q :

 - Calculate the distance between x_q and each training example $x : d(x_q, x)$

 - Select $x_1, ..., x_k$, the k closest instances to x

 - Return the estimation of $f(x_q)$:
 $argmax \sum_{i=1}^k \delta(v, f(x_i))$

Where $\delta(v, f(x_i))=1$ if $v=f(x_i)$ and $\delta(v, f(x_i))=0$ otherwise

 IAT-811 Metacreation

Conclusion

- IBL methods classify test instances based on similarity to specific training instances rather than forming explicit generalizations.
- Typically trade decreased training time for increased testing time.
- K-nearest neighbor is a highly effective inductive inference method for many practical problems

13

- Other methods include:
 - Locally weighted regression
 - Radial basis functions
 - Case-based reasoning

IAT-811 Metacreation