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Reinforcement Learning

* Reinforcement learning design a family of
approaches describing how an agent can learn
from success and failure, reward and
punishment.

Agent
State s€S

Action ae€ A

Reward reR

Environment

The target function is a control policy w:S —A

* The agent's goal is to maximise the cumulated
reward over time
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Examples of reinforcement learning

Examples of reinforcement learning:

*Playing chess: Reward comes at end of
game

*Ping-pong: Reward on each point scored
*Animals:
*Hunger and pain - negative reward
food intake — positive reward
Many real world applications:
*TD-Gammon (backgammon top player)
*Robotics
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Reinforcement Learning

* Notice how this differ from supervised learning
* While it is still function approximation:

— Instead of getting <s,77(S)> for the learning, we get
the reward(s) and it does not directly give 17 (s)

— Temporal credit assignement: the reward is not saying
what actions are to be credited (example of chess)

— The training examples themselves are influenced by
the agent behavior: exgloration of new states or
exploitation of states that are already known to yeld
high rewards (but not necessarily the highest!)

— The agent behavior is interwined with the learning (not
always though)
— Life-long learning: not an isolated function

aproximation task, several tasks have to be learned in
parallel
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Markov Decision Process

* The basic framework for reinfocement learning
is Markovian Decision Process (MDP):

A MDRP is defined as a tuple <S ,t, A, r>, where:
- S is afinite set of distinct states

- A is a discrete set of actions
- t:S*A—S isatransition function t(s,,a,)=s,,,
- r:SxA— R is areward function r(s,,a,)=r,

and: t and r just depend on the current state and action.

Note: In general t and r can be non-deterministic (stochastic).
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Markov Decision Process

e Discounted cumulative reward:
™ 2
VT(s,)=r4yr +y ro,+.

0<y<L1is the discount factor: finite of infinite horizon
If y=0, only the immediate reward is considered
The highier is y the more the future matters

* We want the agent to learn the policy that
maximises the discounted cumulative reward
for all states:

T =argmax, V" (s),VseS

We note V' the value function of the optimal policy
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Markov Decision Process

« We want to learn how to choose the optimal
actionand: ()= argmax|r(s,a)+yV (t(s,a))]

Q(s,a)
» Assuming that we can learn V*, we would still
need to know r() and t() and we don’t!

* The idea is to learn Q through iterative
approximation using a recursive equation:

V*(st):max[r(st,at)+yv*(t(st,at))]zmaxQ(s,at)
) a‘ ) a‘
\ (st):maxQ(st,at), and V (st+1):maXQ(t(st’at)’at+1)

Q(St’a‘t):r(st 'a1)+ymaXQ(t(St ’at)1at+l)

al+1
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Q-learning algorithm

1) For each s, a initialise the table entry Q(s,a) to 0
2) Observe the initial state: s,«s,
3) Select and action a, and execute it

4) Receive immediate reward r,
5) Observe the new states,  ;

6) Update table entry for Q(s,,a,):

Q(Stvat)krt—")’max Q(St+l1at+l)

al+1

7) s, —s,+1
8) Go to step 3)
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Q-learning convergence

* Theorem: Q-Iearninfg converges toward
the true Q values iff:
— The MDP is deterministic
— Rewards are bounded by a constant c
— Each state-action pair is visited infinitely

often

* Proof: the proof consists in showing that
the maximum error over the estimated Q
values is decreasing each time all the
states are visited and eventuall¥
converge (the error's limit is null).

* In practice, we do not need an infinite
number of visits (but many thousands)
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Q-learning algorythm

* We did not specify how the agent selects the
action to execute. There are several possibilities:
— Take a random one (exploration) A
- Exploiting our Q-value: a=argmaxQ (s, ,a,)
&

— That is exploiting what we know, but because of
the precedin? theorem we need to find a balance
between exploitation and exploration

— We use a probabilistic approach:

K Q(s-a) the larger is k the more
P(aj|s)= T o) where k>0 probable actions with
i Q values above average
will be

— Often, k is gradually increased with the number of
iterations
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We assume y=0.9

r(s, a) (immediate reward) values

Only 6 states

0
. . 1111 .
A={up, down, left, right, still} “ﬁ?ip fa
. . wl ¥ ] wol
G is an absorbing state e %-_*
t is determinist: t(G, still)=still 0(s. a) values
T Te 0 w T
* 4l Al i
1 L ||_._ Iy ir
81 % 100
One optimal policy V*(s) values
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Example
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r(s, a) (immediate reward) values

One optimal policy

The first time G is visited from X (t(X,up) is consumed):

Q(X,up)=100

The first time X is visited from Y (t(Y,right) is consumed):

Q(Y,right)=0 + 0.9*100=90

The first time Y is visited from Z (t(Z,down) is consiimady:

Q(Z,Down)=0+ 0.9%90=81 al Oo
G

72 51 )
81 0 wol
o
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Q-learning extensions

» Since the lookup table can be very big, a
neural network can be used to
store/approximate the Q function.

» Extension to the non-deterministic case:
— The reward and/or transition functions can

be non-determinist (in particular stochastic)

— Example of the TD-gammon (the use of a dice
make the transition function stochastic)

— A non-deterministic MDP is one for which the
probability distribution for t(s,a) and r(s,a)
only depend on s and a

— The main difference is that we then deal with

expected cumulated values over these non-
deterministic outcomes.
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Q-learning extensions

» The Q-learning algo learns by iteratively
reducing discrepency between Q value
estimates for adjacent states. In that
sens, it is a special case of temporal
difference algorithms (that can deal with
more distant descendants or ancestrors)

* TD(A) is a generalisation of Q-learning
* Q-learning is equivalent to TD(0)
* Othertypes of reward can be used:

- Disgounted cumulated rewards over a finite
horizon

— Average reward
— More complex reward functions
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Conclusion on Reinforcement Learning

* Reinforcement learning addresses the
problem of learning a control strategy for
autonomous agents

* It assumes that the training information is
available as a real-valued reward signal
and that the goal of the agent is to
maximise the cumulated discounted
reward

* Q-learning provides a solution to that
problem in both the deterministic and
nondeterministic cases.

* Q-learning is a particular t%/pe of temporal
difference learning algorithm.
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“Live as if you were to die tomorrow.
Learn as if you were to live forever.”

Mahatma Gandhi
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