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Reinforcement LearningReinforcement Learning

• Reinforcement learning design a family of 
approaches describing how an agent can learn 
from success and failure, reward and 
punishment.

• The agent's goal is to maximise the cumulated 
reward over time 

Agent

Environment

Action a∈A
State s∈S

The target function is a control policy :S A

Reward r∈R
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Examples of reinforcement learningExamples of reinforcement learning

Examples of reinforcement learning:
•Playing chess: Reward comes at end of 
game
•Ping-pong:  Reward on each point scored
•Animals:   

•Hunger and pain  - negative reward
•food intake – positive reward

Many real world applications: 
•TD-Gammon (backgammon top player)
•Robotics
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Reinforcement LearningReinforcement Learning
• Notice how this differ from supervised learning
• While it is still function approximation:

– Instead of getting                     for the learning, we get 
the reward(s) and it does not directly give 

– Temporal credit assignement: the reward is not saying 
what actions are to be credited (example of chess)

– The training examples themselves are influenced by 
the agent behavior: exploration of new states or 
exploitation of states that are already known to yeld 
high rewards (but not necessarily the highest!)

– The agent behavior is interwined with the learning (not 
always though)

– Life-long learning: not an isolated function 
aproximation task, several tasks have to be learned in 
parallel

< s ,s >
s 
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Markov Decision ProcessMarkov Decision Process

• The basic framework for reinfocement learning 
is Markovian Decision Process (MDP):

 

A MDP is defined as a tuple < S ,t , A , r > , where:
- S  is a finite set of distinct states
- A  is a discrete set of actions
- t : S∗A S  is a transition function t st , at=st1

- r : S∗A R  is a reward function r  st , at=rt

and: t  and r  just depend on the current state and action. 

Note: In general t  and r  can be non-deterministic (stochastic). 
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Markov Decision ProcessMarkov Decision Process

• Discounted cumulative reward:

• We want the agent to learn the policy that 
maximises the discounted cumulative reward 
for all states:

 V  st=rt rt12 rt2...

0≤1 is the discount factor:  finite of infinite horizon

 V  st=rt rt12 rt2...

 *=argmaxV  s  ,∀ s∈S

 We note V *  the value function of the optimal policy

If =0, only the immediate reward is considered
The highier is   the more the future matters
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Markov Decision ProcessMarkov Decision Process

• We want to learn how to choose the optimal 
action and:

• Assuming that we can learn V*, we would still 
need to know r() and t() and we don't!
 

• The idea is to learn Q through iterative 
approximation using a recursive equation:
 

 *s =argmax
a

[ r s , a V *t  s ,a]

Q s ,a

V *st=max
at

Q st , at, and V * st1=max
at1

Qt  st , at , at1

Q st , at=r st , atmax
at1

Q t  st , at , at1

V *st=max
at

[r st , atV *t  st , at]=max
a t

Q s ,at
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Q-learning algorithmQ-learning algorithm

1) For each s , a  initialise the table entry Q s , a  to 0
2) Observe the initial state: st s0

7) st  st1

3) Select and action at and execute it
4) Receive immediate reward rt

5) Observe the new state st1

6) Update table entry for Q st , at:
Q st , at rtmax

at1

 Q st1 , at1

8) Go to step 3)
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Q-learning convergenceQ-learning convergence

• Theorem: Q-learning converges toward 
the true Q values iff:
– The MDP is deterministic
– Rewards are bounded by a constant c
– Each state-action pair is visited infinitely 

often
• Proof: the proof consists in showing that 

the maximum error over the estimated Q 
values is decreasing each time all the 
states are visited and eventually 
converge (the error's limit is null). 

• In practice, we do not need an infinite 
number of visits (but many thousands)
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Q-learning algorythmQ-learning algorythm
• We did not specify how the agent selects the 

action to execute. There are several possibilities:
– Take a random one (exploration)
– Exploiting our Q-value:  

– That is exploiting what we know, but because of 
the preceding theorem we need to find a balance 
between exploitation and exploration

– We use a probabilistic approach:

– Often, k is gradually increased with the number of 
iterations

a=argmax
at

Q st , at

Pai∣s=
k

Q s , ai

∑ j
k
Q s , a j 

,  where k0
the larger is k the more
probable actions with 
Q  values above average
will be
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ExampleExample

We assume =0.9

Only 6 states

A={up, down, left, right, still}

G  is an absorbing state

t  is determinist: t G , still =still
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ExampleExample

The first time G is visited from X (t(X,up) is consumed): 
Q(X,up)=100
The  first time X is visited from Y (t(Y,right) is consumed):
Q(Y,right)=0 + 0.9*100=90
The first time Y is visited from Z (t(Z,down) is consumed):
Q(Z,Down)=0+ 0.9*90=81 
....

XY

Z
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Q-learning extensionsQ-learning extensions

• Since the lookup table can be very big, a 
neural network can be used to 
store/approximate the Q function.

• Extension to the non-deterministic case:
– The reward and/or transition functions can 

be non-determinist (in particular stochastic)
– Example of the TD-gammon (the use of a dice 

make the transition function stochastic)
– A non-deterministic MDP is one for which the 

probability distribution for t(s,a) and r(s,a) 
only depend on s and a

– The main difference is that we then deal with 
expected cumulated values over these non-
deterministic outcomes. 
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Q-learning extensionsQ-learning extensions

• The Q-learning algo learns by iteratively 
reducing discrepency between Q value 
estimates for adjacent states. In that 
sens, it is a special case of temporal 
difference algorithms (that can deal with 
more distant descendants or ancestrors) 

• TD(λ) is a generalisation of Q-learning
• Q-learning is equivalent to TD(0)

• Othertypes of reward can be used:
– Discounted cumulated rewards over a finite 

horizon
– Average reward
– More complex reward functions
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Conclusion on Reinforcement LearningConclusion on Reinforcement Learning

• Reinforcement learning addresses the 
problem of learning a control strategy for 
autonomous agents

• It assumes that the training information is 
available as a real-valued reward signal 
and that the goal of the agent is to 
maximise the cumulated discounted 
reward

• Q-learning provides a solution to that 
problem in both the deterministic and 
nondeterministic cases.

• Q-learning is a particular type of temporal 
difference learning algorithm.
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