IAT 888: Metacreation Machines endowed with creative behavior

Philippe Pasquier Office 565 (floor 14) pasquier@sfu.ca

Assignments: for this Week

Thoughts about the final project:

 One page about your final project and how it relates to your research (PDF)

Assignments: for this Week

- Let's talk about the scheduling of the presentations:
 - Nathan and Automatic Architecture Design (Week 6)
 - Parjad and Digital Puppets (Week 8)
 - Alireza and Agent Programing (Week 7)
 - James and David Cope (Week 9)
 - Andrew and the Continuator (Week 10)
- The idea is to get an independent, readable document in a portable format (PDF).
- I would like (with your permission) to put these on-line (after correction based on the feedback you get in class) in order to:
 - Archive you work

....

Avoid redundancy in future runs

Assignments: for this Week

• Readings:

- Brooks, R. A. "A Robust Layered Control System for a Mobile Robot", IEEE Journal of Robotics and Automation, Vol. 2, No. 1, March 1986, pp. 14–23;
- OPTIONAL, Brooks, R. A., "Elephants Don't Play Chess", Robotics and Autonomous Systems (6), 1990, pp. 3–15. (Available from the authors Web Page).
- OPTIONAL, Luc Steels: "Fifty Years of AI: From Symbols to Embodiment - and Back", in 50 Years of Artificial Intelligence, Lecture Notes in Computer Science, Volume 4850, 2006: 18-28
- Hutzler, G., Gortais, B. From Computer Art to Ambient Displays, Machine Graphics and Vision, Vol. 13, nr 1/2, s. 181--191, 2004. (available online).

In-class Discussion

- Brooks, R. A. "A Robust Layered Control System for a Mobile Robot", IEEE Journal of Robotics and Automation, Vol. 2, No. 1, March 1986, pp. 14–23;
 - OPTIONAL, Brooks, R. A., "Elephants Don't Play Chess", Robotics and Autonomous Systems (6), 1990, pp. 3–15. (Available from the authors Web Page).
 - OPTIONAL, Luc Steels: "Fifty Years of AI: From Symbols to Embodiment - and Back", in 50 Years of Artificial Intelligence, Lecture Notes in Computer Science, Volume 4850, 2006: 18-28

In-class Discussion

- Hutzler, G., Gortais, B. From Computer Art to Ambient Displays, Machine Graphics and Vision, Vol. 13, nr 1/2, s. 181--191, 2004.
 - Presents the work
 - Argue that the work is also an ambient display (art integrated in life, ...)
 - Present some validation experiments:
 - Test if the representation is accurate/expressive enough
 - Test if inference can be made on the base of the representation
 - Compare with other representations

.....

.....

Reading is to the mind what exercise is to the body.

Joseph Addison

- So far we went through:
 - Introduction to metacreation
 - Elements on creativity
 - Introduction to agents
 - Cognitive agents: the BDI model
 - Case study: The Garden of Chance
 - Case study: MAMA
 - Elements of theories of communication
 - Agent communication
- Today, we will focus on:
 - Reactive agents and hybrid architectures

Autonomous Agents (Part 2)

Based on, and inspired by slides from: Michael Wooldridge, Jeff Rosenshein and Michael Rovatsos

Philippe Pasquier Office 565 (floor 14) pasquier@sfu.ca

Philippe Pasquier, January 2010

Autonomous agents

 An agent is a computer system capable of autonomous flexible action in some environment in order to meet its design objectives

Summary

- An agent is a computer system capable of flexible autonomous action in some environment.
- Situatedness: perceiving the environment via sensors and being able to affect the environment via effectors
- Autonomy: a capability of action without intervention, and control over internal state
- Flexibility:
 - Responsiveness: respond in a timely fashion to change in the environment
 - Pro-activity: actions which go beyond simple response to stimulus
 - Sociability: ability to interact with other agents and humans for mutual benefit

Types of Agents

- Three types of agent architectures:
 - **Cognitive:** Also called deliberative architectures
 - Focus on symbolic reasoning and planing
 - Reactive: no representation of the environment
 - Reflex: no internal states (just input->output rules)
 - Reactive: with internal states (but not cognitive)
 - Focus on reactivity (based on behavioral rules)
 - Hybrid: mixing reactive and cognitive components
 - Attempt to balance reactiveness and deliberativeness

Reactive Architectures

- There are many unsolved (some would say insoluble) problems associated with symbolic Al (based on knowledge representation)
- These problems have led some researchers to question the viability of the whole paradigm, and to the development of reactive architectures
- Although, united by a belief that the assumptions underpinning mainstream AI are in some sense wrong, reactive agent researchers use many different techniques
- In this presentation, we start by reviewing the work of one of the most vocal critics of mainstream AI: Rodney Brooks
- This will also remind us that agent technologies are applied both in software and robotics

Brooks – behavior languages

"Elephants don't play chess"

Brooks has put forward three theses:

- Intelligent behavior can be generated without explicit representations of the kind that symbolic AI proposes
- Intelligent behavior can be generated without explicit abstract reasoning of the kind that symbolic Al proposes
- Intelligence is an emergent property of certain complex systems

Brooks – behavior languages

He identifies three key ideas that have informed his research:

- 1. Situatedness and embodiment: 'Real' intelligence is situated in the world, not in disembodied systems such as theorem provers or expert systems.
- This can be captured (to some extent) by the idea of agent (cognitive agents included)
- 2. Intelligence is 'in the eye of the beholder'; it is not an innate, isolated property.
- 3. Intelligence and emergence: 'Intelligent' behavior arises as a result of an agent's interaction with its environment.

Brooks – behavior languages

- To illustrate his ideas, Brooks built some systems based on his subsumption architecture
- A subsumption architecture is a hierarchy of taskaccomplishing behaviors
- Each behavior is a rather simple rule-like structure
- Each behavior 'competes' with others to exercise control over the agent
- Lower layers represent more primitive kinds of behavior (thought to be critical, such as avoiding obstacles), and have precedence over layers further up the hierarchy
- The resulting systems are, in terms of the amount of computation they do, extremely simple

From cognitive agents

A traditional decomposition of a mobile robot control system into functional modules:

Note the similarity/analogy with the BDI architecture

From Brooks, "A Robust Layered Control System for a Mobile Robot", 1985

To Reactive Agents

A decomposition of a mobile robot control system based on tasks achieving behaviors:

From Brooks, "A Robust Layered Control System for a Mobile Robot", 1985

18

Philippe Pasquier, January 2010

Subsumption Architecture

Layered control in the subsumption architecture:

•The system can be partitioned at any level, the layers bellow will form an operational system

From Brooks, "A Robust Layered Control System for a Mobile Robot", 1985 IAT-888 Metacreation **19** *Philippe Pasquier, January 2010*

Example: Steels' Mars Explorer

 Luc Steels' Mars explorer system, using the subsumption architecture, achieves nearoptimal cooperative performance in simulated 'rock gathering on Mars' domain:

The objective is to explore a distant planet, and in particular, to collect sample of a precious rock. The location of the samples is not known in advance, but it is known that they tend to be clustered. There is a radio signal from the mother ship to find the way back.

Steels' Mars Explorer Rules

- Each agent is made of five behavioral rules:
- For individual (non-cooperative) agents, the lowestlevel behavior, (and hence the behavior with the highest "priority") is obstacle avoidance:

- *if* detect an obstacle *then* change direction (1)

- Any samples carried by agents are dropped back at the mother-ship:
 - *if* carrying samples *and* at the base *then* drop samples
- Agents carrying samples will return to the mothership:
 - *if* carrying samples and *not* at the base then follow the radio signal

(2)

(3)

Steels' Mars Explorer Rules

- Agents will collect samples they find:
 if detect a sample *then* pick sample up
- An agent with "nothing better to do" will explore randomly:
 - *if* true *then* move randomly

Works well but does not take into account the fact that the samples are clustured. There is a potential for cooperation (through coordination and thus interaction).

(4)

(5)

Steels' Mars Explorer Rules

- When finding a sample, it would be helpful to tell others, but direct communication is not available
- Inspiration from ants' foraging behaviour:
 - Agent will create trails by dropping crumbs of rock on way back to base, other agents will pick these up (making the trail fainter)
 - If agents find that a trail didn't lead to more samples, they won't reinforce trail
- Modified set of behaviours:
 - 1. If detect an obstacle then change direction
 - 2. *If* carrying samples and at the base *then* drop samples
 - 3. *If* carrying samples and not at the base *then* drop 2 crumbs and follow the radio signal
 - 4. If detect a sample then pick sample up
 - 5. *If* sense crumbs *then* pick up 1 crumb and travel down gradient
 - 6. If true then move randomly

Advantages of Reactive Architecture

- Watch the result (simulated in Starlogo): – http://www.youtube.com/watch?v=kN0M49iqFRc
- Reactive architectures achieve tasks that would be considered very impressive using symbolic Al methods (why not use them for metacreation?)
- Advantages of reactive architectures include:
 - Simplicity
 - Economy
 - Computational tractability
 - Robustness against failure
 - Elegance

Limitations of reactive architectures

- But also some drawbacks:
 - Agents must be able to map local knowledge to appropriate action
 - Impossible to take non-local (or long-term) information into account
 - If it works, how do we know why it works? The departure from "knowledge level" implies a loss of transparency and readability
 - What if it doesn't work? Purely reactive systems are typically hard to debug
 - Engineering emergence: lack of clear design methodology
 - Design becomes difficult with more than a few rules (dynamic interactions between rules become quickly too complex)
 - How about communication with humans?

Hybrid Architectures

- Often, neither completely deliberative nor completely reactive architectures are suitable
- Hybrid architectures combine both perspectives in one agent/system/architecture
- Most obvious approach: construct an agent that consists of one (or more) reactive and one (or more) deliberative sub-components
 - Reactive sub-components would be capable of responding to world changes without any complex reasoning and decision-making
 - Deliberative sub-system would be responsible for abstract planning and decision-making using symbolic representations

Meta-level control of interactions between these components is a key issue in hybrid architectures

Hybrid Architectures

- Often, the reactive component is given some kind of precedence over the deliberative one
- This kind of structuring leads naturally to the idea of layered architecture:
 - Horizontal layering:
 - All layers are connected to sensory input/action output
 - Each layer produces an action, different suggestions have to be reconciled
 - Vertical layering:
 - Only one layer connected to sensors/effectors
 - Filtering approach (one-pass control): propagate intermediate decisions from one layer to another
 - Abstraction layer approach (two-pass control): different layers make decisions at different levels of abstraction

Hybrid Architectures

IAT-888 Metacreation

Philippe Pasquier, January 2010

Example – TouringMachines

I. A. Ferguson, TouringMachines: Autonomous Agents with Attitudes, IEEE Computer, 25, 5, p.51-55, 1992.

- Horizontal layering architecture
- Three sub-systems: (1) perception subsystem, (2) control sub-system and (3) action sub-system
- Control sub-system consists of:
 - Reactive layer: situation-action rules (a la subsumption architecture)
 - Planning layer: construction of plans and action selection
 - Modelling layer: contains symbolic representations of the environment (including mental states of other agents)
- The three layers communicate via explicit control rules

Ferguson – TOURINGMACHINES

IAT-888 Metacreation

Philippe Pasquier, January 2010

Example: InteRRaP

J. Muller and M. Pischel, The Agent Architecture InteRRaP: Concept and Application, Technical Report RR-93-26, DFKI Saarbrucken, 1993.

- InteRRaP: Integration reactive behaviour and rational planning
- Vertical (two-pass) layering architecture
- Three layers:
 - Behaviour-Based Layer: manages reactive behaviour of agent
 - Local Planning Layer: individual planning capabilities
 - Social Planning Layer: determining interaction / cooperation strategies
- Two-pass control flow:
 - Upward activation: when capabilities of lower layer are exceeded, higher layer obtains control
 - Downward commitment: higher layer uses operation primitives of lower layer to achieve objectives

Example: InteRRaP

• Vertically layered, two-pass architecture:

Implementing Reactive Agents

- Netlogo: cross-platform multi-agent programmable modeling environment.
 - http://www.ccl.sesp.northwestern.edu/netlogo/
 - See dozens of applications here: http://www.ccl.sesp.northwestern.edu/netlogo/models/community/
- **Startlogo (MIT version)**:
 - http://education.mit.edu/starlogo/
 - **Example:**http://www.youtube.com/watch?v=kN0M49iqFRc
- RePast:
 - http://repast.sourceforge.net/
- Madkit: built upon the AGR (Agent/Group/Role) organizational model.
 - http://www.madkit.org/
- Note that there are strong links between reactive agents and some A-life systems.

Other types of hybrid agent architectures

- Cognitive architectures: developed in the aim to render believable agents (rather than purely rational ones)
 - Try not to address isolated cognitive components
 - Closer to cognitive science and useful for simulation (rather than problem solving)
- Famous examples include:
 - CLARION
 - ACT-R
 - Soar
 - Cougaar
 - PRODIGY

Cognitive architectures are often hybrid architectures

Conclusion on Agents and MAS

- Agents and MAS are the new paradigm of AI:
 - Agents design: allow addressing cognition and individual behavior
 - Society Design: MAS (ex-Distributed Artificial Intelligence) allow addressing decentralisation and the gap between local and global behavior (emergence)
 - Agents and MAS bridge computer science with: cognitive sciences, economy, social sciences, ...
 - Can be applied to metacreation (perfect candidate!)

Examples of Metacreations

- While our foci is on software machines, some robotic art pieces are applying Brooksian model for robotics (acknowledged explicitly):
 - Kenneth Rinaldo: *The Flock* involves distinct behavioral rules running in parallel.
 - Bill Vorn and Louis-Philippe Demers: various robotic ecosystems (*Espave Vectoriel*)
 - Simon Penny: Works and writings (Petit Mal)
- But as Penny puts it: "Although the principle of Brooksian subsumption architecture was influential, the software architecture of Petit Mal is a hybrid of various techniques ..."

Here, the absence of a strict methodology turns out to be an advantage!

• Other artists using bottom-up emergent robotics: Ulrike Gabriel, Erwin Driessens and Maria Verstappen, Yves Amu Klein

The Flock (Kenneth Rinaldo, Siggraph 1993.)

Espace Vectoriel (Vorn and Demers, 1994)

Petit Mal (Simon Penny, 1995)

Applications in Video Games, ...

- Video games (aka Interactive Entertainment):
 - A version of Tetris using (behavior based) reactive agents
 - Wavish, P., Graham, M. (1996) A situated action approach to implementing characters in computer games. *Int. Journal of Applied Artificial Intelligence*, 10(1), 53-74.
 - Using cognitive agents for believable character (in video games and virtual theatre):
 - Hayes-Roth, B., Brownston, L., Sincoff, E., and van Gent, R. Directed improvisation by computer characters. Stanford Knowledge Systems Laboratory Report KSL-95-04, 1995.
 - While entertainment was not taken seriously by early AI researcher, it is now the reverse. Why? (17.9 billion dollars in 2007, in the U.S. only)

Examples of Metacreations

• We have been looking at:

- The Garden of Chances (Guillaume Hutzler, Paris) Visual Agent/MAS
- MAMA (David Murray-Rust, University of Edinburgh) Sound Speech Acts, Agent/MAS
- Other software machines exploiting agent and MAS concepts have also been proposed:
 - Bob (Belinda Thom, Carnegy Melon University) Sound Agent/Unsupervised learning
 - Kinetic Engine (Arne Engelfeld, SFU, Vancouver) Sound MAS
 - VMMAS (Whulfhorst, UFRGS, Rio) Sound MAS
 - Virtualatin (David Murray-Rust, University of Edinburgh) sound Agent/MAS
 - ANDANTE (Leo Ueda, University of Sao Paolo) sound Agent
 - Eden (Mc Cormack, CEMA, Monash University, Melbourne) visual MAS/A-life
 - Continuator (Francois Pachet, Sony lab, Paris) sound Agent + HMM
 - O-MAX Brothers (Assayag, Ircam, Paris) sound statistical learning + MAS
 - An interactive MIDI accompanist. (Toiviainen, P.) sound agent
 - SPAA or AALIVENET (Michael Spicer, Singapore) sound agent based

.....

.....

"When many work together for a goal, great things may be accomplished. It is said a lion cub was killed by a single colony of ants."

Saskya Pandita (1182-1251)

Assignments: for next Week

- Readings:
 - Lippmann, R. An introduction to computing with neural nets. IEEE Signal Processing Magazine, Volume: 4, Issue: 2, Part 1, page(s): 4- 22, 1987 (Available via IEEE Xplore system, accessible via SFU library electronic collection)
 - Dolson, M., Machine Tongues XII: Neural Networks, Computer Music Journal, Vol. 13, No. 3., pp. 28-40, 1989. (Available through JSTOR, accessible via SFU library electronic collection)
 - Todd, P.M. Neural networks for applications in the arts. In M. Scott (Ed.), Proceedings of the Eleventh Annual Symposium on Small Computers in the Arts (pp. 3-8). Philadelphia, PA: Small Computers in the Arts Network, Inc. 1991. (Available on the author's Web page).
 - OPTIONAL, Lewis, J.P. Shape and Texture Generation by Neural Network Creation Paradigm, Proceedings of Graphics Interface '91, pages 129-134, 1991. (Available online)