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Chapter 6

UNIVARIATE DESCRIPTIVE STATISTICS

“Statistics” is four things:

! an academic s ubject or discipline. There is a
Department of Statistics in many universities. You
may take a course called Statistics 101.

! a set of methods used to process and interpret
quantitative data. Most of this “p rocessing” and
“interpretation” involves doing things that allow
you to see patterns in the data.

! collections of data gathered with the methods
described above. 

! a set of figures that summarize a set of data.  More
precisely, statistics are figures that summarize
samples, while parameters summarize popula-
tions.

In this book I’m going to ig nore th e first and third
types of “statistics.”  I’ll spend most of my time on the
second type — the methods used to interpret quanti-
tative data.

Descriptive and Inferential Statistics

On page 35 you read about sampling — what it is and
why you do it. You know tha t samples are different
from the population, and you know something about

the relation between samples and their populations.
It won't surprise you to learn that th e st atistical
methods used for samples are different from the ones
used for populations. The methods used for samples
are known as descriptive statistics, while the ones used
for populations are known as inferential statistics.

Descriptive statistics are sim ple. Their task is to
describe the data in a sam ple. You are probably
already familiar with some kinds of descriptive
statistics; the quantity c ommonly known as “the
average” is the most familiar one. When you calculate
the average of the ages of a g roup of people, you are
doing descriptive statistics:  you are summarizing the
data you have.

Inferential statistics are more complicated. Where
you would use descriptive statistics to summarize the
data from your sample, you don’t have data from the
population, so you have to mak e l ogical inferences
about it. This is where inferential statistics are used.
Their task is to help y ou make inferences about the
population based on the information you have about
your sample. While the math is a little bit m ore
complicated here than it is for descriptive statistics, it
is the logic involved that most people find confusing
when they first learn inferential statistics.

I’ll begin with the simplest kind of descriptive
statistics — the ones that describe only one variable
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at a time. Then I’ll move to the kind that describe
differences or relationships. These use two variables
at a time. After I've laid the groundwork, I'll venture
into the area of inferential statistics.

Descriptive Statistics

Descriptive statistics are tools you use to summarize
your data in an e ffective and meaningful way. They
are used to pull information about important aspects
of your data out of the pile of numbers and to make it
visible in a useful way.

On page 23 you read that variables ar e e ither
discrete (also called categorical because they are used
to sort things into categories) or continuous.  Th e
methods used f or discrete variables are generally
different from the ones used for continuous variables.
Whether a variable is discrete or continuous turns out
to have important implications for what you can do
with it and how you use it.  These implications will be
discussed in the following pages.

There are two classes of univariate descriptive
statistics: measures of central tendency and measures
of dispersion.

Central tendency gets a t th e “t ypical” or “most
common” value in a set of values. Dispersion tells how
much spread or how much scattering around the
central value there is. You use different measures of
central tendency and dispersion f or data scaled at
different levels. The main reason for this is that
different types of scaling produce different kinds of

“numbers,” and they vary in the extent to which they
allow you to perform arithmetical operations (addi-
tion, multiplication, etc.) on them.

Central Tendency

Because different kinds of numbers represent differ-
ent aspects of reality, you need to use different mea-
sures of central tendency for different levels of scal-
ing. Remember that nominal data sorts cases into
categories and only tells which ca tegory each case
belongs to; with nominal data you can only tell
whether two cases are in the same category or in
different categories. O rdinal data tells you more; it
orders cases from low to high. With ordinal data you
can tell whether one value is higher than another, but
you can’t t ell how much higher it may be. With
interval data you can not only do everything that you
do with nominal an d o rdinal data; you can also
determine the size o f th e diff erence between two
values. With interval scaling, the numbers y ou get
behave like real numbers — you can add and subtract
values.  Ra tio scaling goes one step further because
the scale is anchored by an absolute zero value.  These
differences mean that you have to ma tch your ana-
lytic approach to your data.

The mode is the most common category or value in
the data. If more women are named Linda than any
other name, Linda is the modal value o f w omen's
names. The mode is the only measure of central
tendency that can be used w ith nominal data. It is a
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discrete measure, and cannot be used with continuous
interval or ratio data without first grouping the data
into discrete categorical ranges. For example, if you
wanted to get th e m ode of the height of students at
your university, you w ould ha ve to group their
heights into categories by rounding, say, to the
nearest inch. This would make height a discrete vari-
able. 

! The mode is not influenced by extreme values.  

! The mode is sensitive only to the most frequently
occurring score; it is insensitive to all other scores.

! The mode is of little val ue for non-categorical
(e.g., continuous) data; it is used almost e xclu-
sively for discrete variables.

The median is the value at the midpoint of a rank-
ordered list of all the values in a set of data. If you have
a large group of people line up in order from shortest
to tallest, the height of the person in the middle of the
line will be the median of the group’s height.

Half the values are above the median and half are
below the median. If there ar e an od d n umber of
scores, the median will be the center point in th e
rank-ordered list o f po ints.  I f th ere are an even
number of scores, the median will be the mean of the
two centermost points.  Note that the median is not the
midpoint of the range (the diff erence between the
highest and lowest values).

If you split the list of values into the half below the
median and th e half a bove the median (a “median

split”), you could find the middle value of each half.
These values ( marked “Q1” and “Q3" on the drawing
on page 46), together with the median, divide the list
of values into f our parts called “quartiles,” each of
which contains 25% of all the cases in your data.  The
median is so metimes referred to as the “second
quartile.”

Because the only thing it needs from your data is
the order of the values, the median can be used for all
types of scaling except nominal. 

! The median can be used for discrete or continuous
variables.

! The median is not influenced by extreme values.

! The median is sensitive only to the value of the
middle point or points; it is not sensitive to th e
values of all other points.

The mean is the arithmetic average of a set o f
values. It is calculated by dividing the sum of all the
values by the number of values.  Because the calcula-
tion of the mean requires addition, it can only be used
with interval or ratio data.  Since every value in a set
of data affects the mean, the mean uses more of the
information in the da ta than th e m edian does. Ex-
treme values have a disproportionately large effect on
the mean. 

With the mean we see the first ma thematical
equation and symbols for this course. The symbol for
the mean of a sample is  (pronounced “x-bar”).x
The symbol for the mean of a population is  :  (the
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lowercase Greek letter “mu”). In the formula below,

is the mean of all the values for the variable  in ax x
set of data. 

The symbol   is a Greek uppercase sigma —∑
about as close as you can get in Greek t o th e letter 
“S” (as in “sum”).  It means “add up all the things that
follow.”  In the equation below, it means add together
the scores of all the people on the variable : x

x x x x xi
i

n

n
=
∑ = + + + +

1
1 2 3 K

The part to the left of the equal sign in the equation is
read as “the sum of  x-sub-i;  i goes from 1 to n.” 

To calculate the mean of a list of numbers, you add
them all together and divide the result by how many
there are. In other words, 

mean x
x

n
i= = ∑

 So the mean of the numbers 2, 3, 4, 5, 6 would be:

2 3 4 5 6

5

+ + + +

! The mean requires interval or ratio data.

! The mean is the preferred measure for interval or
ratio data. 

! The mean is generally not used for discrete vari-
ables.

! The mean is se nsitive to all scores in a sample
(every number in the data affects the mean), which
makes it a more “powerful” measure than the
median or mode.

! The mean's sensitivity to al l scores also makes it
sensitive to extreme values, which is why the me-
dian is used when there are extreme values.

Dispersion

Something you will notice if you look at almost any
set of data is that not all observations have the same
score on any variable. People differ from one another

in terms of their attitudes, their be liefs, or their
behaviors.  M agazines differ from one another in
terms o f their content, their format, their cost, and
how often they are published. The goal o f m ost
research is to describe or explain the variability in the
data.

The simplest thing you can do with your data is
measure the amount of variability in the scores of your
variables.  When you do this, you will be measuring
dispersion.  D ispersion tells how scattered or spread
out the values are. The less spread out the values are,
the more concentrated or clustered they will be, and
the more likely it is that there will be a “most c om-
mon” or “typical” or “central” value. Also, the l ess
dispersion there is, the more you can learn about the
whole set of values by knowing its central value. 

For nominal data, the only k ind of comparison
you can do with a pair of values is to see whether they
are the same or different. You can only use a measure
of dispersion that looks at the extent to which the
values in th e data are the same as or different from
one another. The measure of dispersion that does this
is the information-theoretic measure of uncertainty.

If all the cases in your data have the same value —
if they all occupy the same nominal category — there
is no uncertainty about what the typical value is. For
example, if all dogs were named Spot, the most com-
mon name for a dog (the modal name) would be Spot.
In fact, you would have little doubt (uncertainty)
about what the name of the next dog you saw would
be. If each case is the sole oc cupant of its category,
there is maxim um uncertainty of what the typical
value is. F or example, if every dog had a different,
unique name, there would be no “typical” dog's
name; you would be completely uncertain about what
the next dog’s name would be.  If half of all dogs were
named Spot and th e r est were named Rover, you
would have more uncertainty than if they were all
named S pot, but less than if they all had different
names. The measure of uncertainty in your data tells
you the extent to which the values in your da ta are
different from or equal to one another.  This measure
is not commonly used, mainly because people don’t
often calculate dispersion for nominal data.
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The simplest measure of dispersion for numerical
data is the range — the difference between the high-
est and lowest values, as you can see in the drawing on
the next page.  Because the difference is a distance, the
range can only be calculated on interval or ratio data.
The range is determined by only two values — the
lowest and the highest — the tw o m ost extreme
values in the data. As you can see f rom the drawing
above, the range is strongly influenced by extreme
values. If the tallest woman is included, the range is
3.2. If she were e xcluded from the data, the range
would drop to 4.9 - 3.0 = 1.9.  Because of this depend-
ence on the two most unusual values, the range doesn’t
tell much about the data.  It tells nothing, for example,
about how far from the center typical values lie.

The interquartile range (IQR) can be used f or
ordinal, interval, or ratio data. It is th e diff erence
between the first and third quartiles in the data. If you
remove the top 25% and the bottom 25% of all cases
and then cal culate the range of the remaining cases,
you will get the IQR.  While the IQR is more valuable
than the range because it is not influenced as much by
extreme values, it is more difficult to calculate, as it
requires the data points to be r ank ordered.  Also, it
doesn’t work well for small samples, especially ones
with an odd number of cases.  

The figure on the top of th e pa ge illustrates the
IQR in relation to the median. You would say either
“The IQR is 1.2” or, more likely, “The middle 50% of
the sample have heights between 3.3 and 4.5.”

Neither the range or the interquartile range take all
of the values in your data into account. The range is
determined by the two most extreme values and the
IQR is determined by the lowest and highest values in
the middle 50% of your data. There are two measures
of dispersion that take every value in your data into
consideration. For nominal data, you can use th e
information-theoretic measure of uncertainty. F or
continuous (i.e. interval or ratio) data, you would use
variance or its very close relative, standard deviation.

Variance

All measures of dispersion are assessments of  wha t
you might call “variability”or “variety” — the extent
to which values in your data differ from one another.
Variance is a particularly useful measure of variety or
variability  f or interval- or ratio-scaled data. It is
probably the most important statistical concept, and
it is used in a very wide range of situations.

 The variance of a set of numbers is based on the
distance between each value and the mean of all the
values. It starts w ith deviation scores. The deviation
score for an individual is the difference between the
individual's score and the mean. It is written like this:

d x xi i= −

where “d i” is the deviation score for the ith individual,
and “xi” is the ith individual's value (i.e., the score for
person number i).



-50- UNIVARIATE DESCRIPTIVE STATISTICS

If an individual’s score is higher than the mean, the
deviation score will be positive; if it is lower than the
mean, the deviation score w ill be n egative, as in the
drawing above. It might seem to make sense to cal-
culate the mean of the deviation scores. There is a
problem with this, though, because th e s um of the
deviation scores is always zero (why does this hap-
pen?), so the m ean of the deviation scores will also
always be zero. 

Sometimes people speak of the “average deviation”
or the “mean absolute deviation,” which is the mean of
the absolute values of th e d eviation scores. (The
“absolute value” means that you ignore minus signs
and treat all scores as if they were positive numbers.)

It tur ns out that there is a better way of dealing
with negative deviation scores. If you square a nega-
tive number, the result becomes positive. So, if you
square the deviation scores, the results will always be
positive. The sum of the squared deviation scores is
called the sum of squares (SS). Note: The sum of
squares is not the variance. The SS is the first step in
the calculation of variance, and it is something you
will see in a variety of situations in the coming chap-
ters.

SS d
i

=∑ 2

The variance is the sum of squares divided by the
number of scores that went into the sum. In other
words, it is the mean of the squared deviation scores.
This is why variance is sometimes called by the more
descriptive name mean square.  Note that this name

tells you how to calculate the variance ( if you can
remember what it is you have to square!).

The symbol for a population’s variance is  Theσ2.
letter in the symbol is a lowercase Greek sigma.  Here
is the equation for a population’s variance:

σ2
2

= =∑D

N

SS

N
i

In the equation, the “Di”  is deviation scores — the
differences between the individual scores and the
population’s mean.  “N” is the number of cases. (The
“D” and “N” are uppercase to remind you that  they
are population values, not sample values.) 

The symbol for the variance of a sample is .s2

When you calculate the variance for a sample, the size
of the sample is transformed into a value called
degrees o f f reedom.  Th e degrees of freedom for a
sample of size n is n - 1, so you divide by (n-1) instead
of N.  This change ma kes t he variance of a sample a
better estimate of the population's variance.  (This issue
is discussed in more detail  on page 53.) So the equa-
tion for a sample’s variance is:

s
d

n

SS

n
i2
2

1 1
=

−
=

−
∑

Standard Deviation 

The standard deviation is the square root of the
variance. It is so metimes called the root mean
square, because it is the square root of the mean of the
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squared deviation scores.  The standard deviation is
the most commonly used measure of dispersion for
interval or ratio level data. 

While the variance is a measure of the o verall
amount of variability or spread around the mean, the
standard deviation is a measure of the typical devia-
tion from the mean. Like the variance and the mean,
the standard deviation is sensitive to all scores.  The
symbol for a sample’s st andard deviation is a lower-
case “s”.  The symbol for population standard devia-

tion is a lowercase Greek sigma:  F.  The equation for
a sample’s standard deviation is:

s
d

n

SS

n
i=

−
=

−
∑ 2

1 1

Standard Scores (or “z-scores")

If an individual person's score is converted so it tells
how far from the mean the person is, it will become a
relative score that will let you know how this person
compares to the rest of the sample. The most c om-
mon way of doing this is to calculate a standard score.
The word “standard” in “standard score” is the same
one as in “standard deviation.” This is not a c oinci-
dence. To calculate standard scores, you divide the
individual’s deviation score (the difference between
the individual’s score  and the mean) by the standard
deviation. The equation to calculate an in dividual’s
standard score is:

z
x x

si
i= −

The subscript i tells whi ch person you are doing
this for.  xi  is person i’s score on the variable. The s in
the denominator is the standard deviation. If the
standard deviation is 2, the mean is 5, and your score
is 7, your z-score would be:

( ) ( )x x

s
i −

=
−

= =
7 5

2

2

2
10.

If your score was 4, your z-score would be:

( )4 5

2

1

2
0 5

−
= − = − .

A positive z-score m eans that you are above the
mean; a negative z-score means that you are below
the mean.

A person’s z-score tells how far away f rom the
mean that person’s sc ore is, in terms of standard
deviations. If your z-score is 1.0, you are one standard
deviation above the mean. If your z-score is !3.5, you
are three and a half standard deviations below the
mean.

If you know the mean and standard deviation and
you want to convert z-scores back into raw scores,
you can use this equation:

( )x z s xi i= × +
Just multiply th e z-score by the standard deviation
and add the result to the mean. Here are a few exam-
ples:

Mean Std. Dev. Raw Score z- score

10 2 6 -2.0

10 2 13 1.5

10 5 12 0.4

12 3 10 -0.667

12 3 16.4 1.466667

The table below summarizes which measures o f
central tendency and dispersion are used for different
levels of scaling.

Level of
Scaling

discrete or
continuous

central 
tendency

dispersion

nominal discrete mode uncertainty

ordinal discrete median IQR

interval continuous
median or

mean
std. dev.
 or IQR

ratio continuous
median or

mean
std. dev. 
or IQR
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Calculating Standard Deviation

An alternative name for st andard deviation, “root
mean square,” tells how to calculate it: the standard
deviation is the square root of the mean of the squared
deviation scores.  The deviation score is the dif-( )di

ference between the individual's score and th e( )xi

mean .( )x
So the equation for standard deviation is:

( )

( ) ( ) ( )

s
d

n

x x

n

x x x x x x

n

i

i

n

=
−

=
−

−

=
− + − + + −

−

∑

∑

2

2

1

2

2

2 2

1

1

1

K

This equation shows the additions, subtractions,
and multiplications you have to do to calculate the
standard deviation.  This is the equation you first saw
on page 51. Th e o nly good things that you can say
about this equation are first, that it works; and sec-
ond, that you can remember it if you can remember
“root mean square.” (Don’t forget that it is the devia-
tion scores that get squared!)  The bad thing about it is
that it involves a lot of work.  You have to cal culate
the mean, then you have to subtract the mean from
every value on the list. Then you have to s quare the
differences and add them up. Finally, you divide by
n - 1 and take the square root.

Here is a different form of the equation, called the
“computational form” beca use it is much easier to
use.  I t is easi er because you d on’t have to calculate
the mean or the deviation scores:

s
x x n

n
i i=

−
−
∑∑ 2 2

1

( )

1) First, calculate the sum of the squares of the ori-

ginal scores:    xi
2∑

2) Then calculate the sum of the original scores,
square it, and di vide the result by n, the sample
size:

    ( )x ni∑
2

3) Now subtract the result o f st ep 2 from the first
sum;

4) Divide the result of step 3 by your sample size
minus 1;

5) . . . and take the square root.  Voila!

The result is exactly the same as if y ou calculated
the mean, the deviation scores, the squares o f th e
deviation scores, the sum of the squares . . . . With the
new method, you do a lot less work.  You only need to
add up all the scores for one total and then add up the
squares of the scores for the second total. The rest is
easy. The table below shows a comparison o f th e
amount of work you have to do with the two methods
for samples containing 7 and 50 cases.

original
method

computational
form

n = 7 n = 50 n = 7 n = 50

additions 14 100 14 100

subtractions 8 51 2 2

multiplications 7 50 8 50

divisions 2 2 2 2

square roots 1 1 1 1

total 32 204 27 155

The numbers in the last line of this table actually
underestimate the difference in the amount of work.
This is because the original method usually requires
working with messy numbers — numbers involving
decimals like 27.3841, 4.2938, et c.  Th ese numbers
result from subtracting the mean from the original
scores to calculate deviation scores. When you square
the deviation scores, the numbers get even messier,
increasing the amount of work you have to do with all
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of those additional digits, and requiring more round-
ing, which introduces rounding errors. 

In comparison, almost all of the numbers you use
with the computational form are whole numbers.  It’s
easy to see that the computational form is the one you
would want to use:   F irst, because it almost com-
pletely eliminates rounding error, the result is m ore
accurate. Second, it takes less work and the work you
do is easier because you are using whole numbers.

Sample or Population?

The equation for a population's variance and standard
deviation are:

    and   σ2
2

= ∑D

N
i σ = ∑D

N

i
2

In the equation, the “Di”  is deviation scores — the
differences between the individual scores and the
population's mean.  The “N” is the population’s size.
The “D” and “N” are uppercase beca use they are
population values, not sample values. 

To cal culate FFFF for a population, you need t o
calculate the sum of the squares of th e d eviation
scores for all members of the population.  Since most
social research is interested large populations — in
which getting data from all members is either impos-
sible or impractical — you will rarely find yourself
trying to calculate FFFF.  Instead, you will most likely be
using data from a sample to estimate  FFFF.

Remember that a sample is a s ubset of a popula-
tion, chosen in such a way that what you learn about
the sample can be g eneralized to the population.
Because sam ple statistics are used as the basis for
estimates of population parameters, there may be
some adjustments made to the equations used for the
corresponding population parameters. For standard
deviation and variance, you use n-1 instead of n in the
denominator, which produces  a slightly larger result.
The difference w ill be more significant for smaller
samples than f or larger ones. In general, a larger
standard deviation or variance w ill produce a more

conservative conclusion from any statistical decisions
you might make. Since small samples provide results
that are less stable than those from larger ones, this
conservative modification is a desirable thing to do.

The equations for a sample’s variance and standard
deviation are:

    and   s
d

n
i2
2

1
=

−
∑

s
d

n
i=

−
∑ 2

1

The Uses of the Standard Deviation

Standard deviations are used for several purposes,
sometimes to give information directly, and some-
times in the calculation of another statistical measure.
Here are three important uses of the standard devia-
tion:

! The standard deviation is the most common
measure of dispersion when the data is scaled at
the interval or ratio level.  Here you are describ-
ing the extent to which the elements in a sample
are spread out from one another — in particular,
how far the typical value is from the mean.  If you
think about this, you will realize that knowing the
standard deviation allows you to know how good
an estimate of central tendency the mean is.

For example, for a course with 50 students, if
the mean score on the final exam is 75 an d the
standard deviation is 0.5, you will k now that
most scores are pretty close to 75. (In fact, about
95% of all the scores will be between 74 and 76.)
In this case, the mean, is a very good indicator of
the “typical” score.  

In contrast, if th e mean is 75 and the stan-
dard deviation is 28.0, y ou don’t really know
what the “typical” score is. There might not even
be any scores between 70 and 80.  I t tur ns o ut
that you would be safe in estimating that 95% of
all scores are between 25 and 125, b ut this is a
pretty big range.  Ge nerally, you would want a
more precise estimate than that.
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! The sample standard deviation, when it is calcu-
lated with (n-1) in the denominator, is used as an
estimate of the population’s standard deviation,
which tells you how much variety or heterogeneity
there is in the population.

! When you combine the mean with the standard
deviation in the calculation of z-scores (for a
normally distributed variable), you can tell where
an individual is in the distribution relative to the
other m embers.  F or example, if your z-score is
2.52, you are above 97.5% of everyone else in the
sample.  I f your z-score is 1.0, about 16% o f th e
other people are above you.

One benefit of using z-scores is that it allows

you to compare variables that ha ve different
means and standard deviations.  R emember that
the z-score is also known as the standard score.
When you transform a person’s raw score (the
original value) into a  z-score, you standardize it
by converting it to a scale where the mean is zero
and the uni ts are marked off in standard devia-
tions.  Starting from the mean and going up, you
have 0, 1, 2, and so on. These numbers mean “0, 1,
2, etc. standard deviations above the mean.”  Once
you have standardized your scores by computing
z-scores, you can compare a person’s score on one
variable to their score on another variable (or to
someone else’s score on another variable).

The computational formula for 
standard deviation

If you are curious, here is a demonstration of the
basis for the computational formula for standard
deviation. Compare the original and computational
versions.  Note that the only difference between the two
equations is the numerators:

original equation computational equation

s
d

n
i=

−
∑ 2

1
( )

s
x x n

n

i i
=

−

−
∑∑ 2 2

1

Consider the numerator of the original formula: 

di
2∑

Since , the deviation score, is , you coulddi x xi −
rewrite the numerator like this:

( )x xi −∑ 2

which is:

( )( )x x x xi i− −∑
If you multiply the terms in the product, you get:

( )x x x x x x xxi i i i∑ − − +

which you can simplify as:

( )x x x xi i
2 22∑ − +

You can break it up into three sums:

x x x xi i
2 22− +∑∑∑

Since , the mean, is  ,  you can rewrite thex

x

n

i∑

above  sum as:

x x
x
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x

n
i i
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which simplifies to:
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and then to:

( )
x

x x

n

x

n
i

i i i2

2
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which gives:

( ) ( )
x

x

n

x

n
i
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and, at last, we have:
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. . . which is the numerator of the computational formula!

As a bonus, here is a simpler computational version:
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−

−
∑ 2 2
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How to calculate standard deviation with the original method

s
d

n

i=
−

∑ 2

1

1. Make three columns, like the o nes o n th e r ight,
headed “Xi,” “di,” and “di

2”

2. Write the values of the variable in the first column,
and count them to see how many there are. 
(ex: n = 20)

3. Add all the values in the first column to get a total.
(ex: total = 120)

4. Divide the total by the number there are to get the
mean.  (ex: mean = 120/20 = 6.0)

5. Subtract the mean from each value in th e fir st
column an d w rite the results in the second col-
umn.

6. Square each value in the second column and write
the result in the third column.

7. Add all the values in th e thir d c olumn to get a
total. This is the “sum of squares". 

(ex: total SS = 40)

8. Divide the sum of squares b y n - 1  to get the
variance. 

 (ex: variance = 2.1052632)

9. Take the square root o f th e var iance to get the
standard deviation. 

(ex: std. dev. = 1.4509525)

(1) Xi di di
2

(2) 8

6

4

5

6

5

4

8

7

8

4

5

8

7

6

5

5

6

8

5

(5)   2

  0

-2

-1

  0

-1

-2

  2

  1

  2

-2

-1

  2

  1

  0

-1

-1

  0

  2

-1

(6) 4

0

4

1

0

1

4

4

1

4

4

1

4

1

0

1

1

0

4

1

Sums:  (3) 120 0 (7) 40

(2) n =20

(4) Mean = 120/20  =  6.0

(8) variance   =  40/19  =  2.105263158   .   2.105

(9) std. dev. = variance  = 1.4509525  .  1.451



-56- UNIVARIATE DESCRIPTIVE STATISTICS

How to calculate standard deviation with the computational method

( )
s

x x n

n

i i
=

−

−
∑∑ 2

2

1

1. Make two columns, headed “Xi” and “Xi
2"

2. Write the values of the variable in the first c ol-
umn, and count them to see how many there are.

(ex:  n = 20)

3. Add all the values in the column to get a total.  

(ex:  total = 120) 

4. Square each value in the first column and write
the result in the second column.

5. Add all the values in the second column to get a
total. 

 (ex:  total = 760) 

6. Square the first total. 

(ex:  120 × 120 = 14,400)

7. Divide the value y ou o btained in step 6 by the
sample size.  

(ex:  14,400 / 20 = 720)

8. Subtract the result of step 7 from the result of step
5. The difference is the sum of squares (SS).

(ex:  760 – 720 = 40)

9. Divide the sum o f s quares by (n-1) to get the
variance. 

(ex:  40 / 19 = 2.1052632)

10. Take the square root of the variance to get th e
standard deviation. 

(ex:  std. dev. = 1.4509525)

(1) Xi Xi
2

(2) 8

6

4

5

6

5

4

8

7

8

4

5

8

7

6

5

5

6

8

5

(4) 64 

36 

16 

25 

36 

25 

16 

64 

49 

64 

16 

25 

64 

49 

36 

25 

25 

36 

64 

25 

Sums:    (3) 120 (5) 760

(6)

(7)

(8)

(9)

(10)

120 × 120 = 14400 

14400 ÷ 20 = 720

760 – 720 = 40

variance 40/19 = 2.105263158   (2.105) 

std. dev. = variance =  1.4509525   (1.451)
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Important Terms and Concepts

average deviation
central tendency
computational formula
degrees of freedom
descriptive statistics
deviation scores
dispersion
extreme value
inferential statistics
information-theoretic uncertainty
interquartile range (IQR)
mean absolute deviation
mean
mean square
median
midpoint of range
modal value
mode
range
root mean square
standard scores
standard deviation 
statistics
sum of squares (SS)
variability or spread around the mean
variance
z-score

Things to think about .....

Add one more observation with the value of 9 to the
data on page 55 an d see wha t it does to the results,
using the calculation method on page 55. You will
have to calculate a new sum f or the first column, a
new mean, new deviation scores, new squared devia-
tion scores, etc. It’s a lot of work!  The new sum in the
first column will be 120 + 9 = 129.  The new n will be
21 instead of 20.   

What is the new mean? 

What is the new sum of squares? 

What is the new variance? 

Do the same thing with the data on page 56 and see
what it does to the results, using th e cal culation
method on page 56.

What is the new mean? 

What is the new sum of squares? 

What is the new variance? 

Which method do you prefer? 

Which result is likely to be more accurate?  Why?

Examples of data and mean & standard deviation:

3 sets of data
x    s       xi∑ xi

2∑
      7, 28, 12, 17, 23, 13,  0, 16, 25,  7, 25, 15, 13,  9,  2,  4 13.50 8.5557 216.0 4014.0

95, 79, 83, 61, 85, 59, 52, 54, 95, 79, 74, 91, 83, 84, 94, 64 77.00 14.6924 1232.0 98102.

41, 31, 36, 42, 47, 49, 38, 45, 46, 31, 37, 48, 35, 32, 43, 39 40.00 6.05530 640. 26150.



Notes


