My What Gravity Does

All objects pull all other objects

The forces on two objects are equal in magnitude opposite in direction

Proportional to masses of each object

 $m_1 m_2$

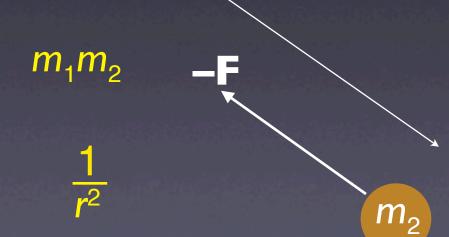
_F

Inversely proportional to the distance-squared between their centres.

 m_2

 m_1

What Gravity Does


$$F = G \frac{m_1 m_2}{r^2}$$

G is a "universal constant".

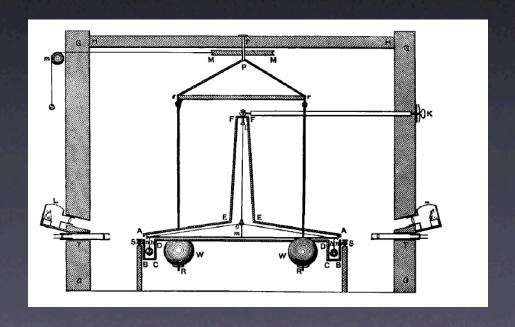
It's the same everywhere

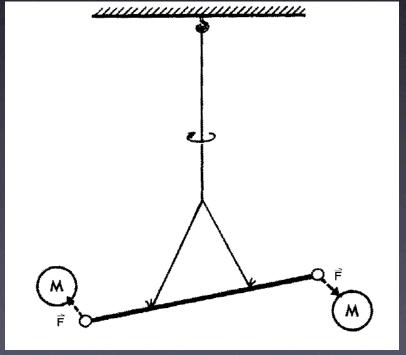
for all time

We think

What's G?

- Force between two 1-kg masses, 1 m apart
 —too small to measure
- On earth, $g = G m_{earth}/r^2_{earth}$
 - —what r_{earth} do we use? (Newton solved this)
 - —Have Gm_{earth} together, have to guess m_{earth} .
- Kepler's $K = Gm_{sun}/4\pi^2$ similar problem


Enter Henry's Torsion Balance



Enter Henry's Torsion Balance

Henry Cavendish that is... (1798)

Enter Henry's Torsion Balance

Henry Cavendish that is...

 $G = 0.667 \times 10^{-10} \text{ N-m}^2/\text{kg}^2$

Quiz

- Somewhere in space, I 50 000 000 km from the sun is a stool
- On that stool is an ordinary spring scale
- And on that scale is a planet
- How much does the planet weight?

Answer

- The stool has a very weak gravitational field
- The planet is not heavy enough to crush the stool
- The planet weighs 45 N
- The planet's mass is 5.972 sextillion metric tonnes. (5.972 x 10²⁴ kg)