Calculation with powers of ten
When you multiply, add the powers ten
103×102 = 103+2 = 105
103×10−2 = 103−2 = 101=10
When you divide, subtract the power of ten in the denominator
from
the power of ten in the numerator.
$$\frac{10^3}{10^2} = 10^{3-2} = 10$$
$$\frac{10^3}{10^{-2}} = 10^{3-(-2)} = 10^5$$
When you multiply two numbers in power-of-ten notation (scientific
notation),
collect the prenumbers and the powers of ten. Multiply the prenumbers
and
add the exponents of ten. For example
$$\begin{align*}\left( 2.4 \times 10^3 \right) \left( 1.2 \times 10^2
\right)
&= 2.4 \times 1.2 \times 10^{3+2} \\ &= 2.88 \times 10^5
\end{align*}$$
Similarly for division...
$$
\begin{align*} \frac{ 2.4 \times 10^3 }{1.2 \times 10^2 } \\
&= \frac{1.4}{ 1.2} \times 10^{3 - 2} \\ &= 2.0 \times 10^1 \\
&= 20. \end{align*}$$
For adding and subtracting you must express both numbers in
the same
power of ten before adding or subtracting the prenumbers:
$$\begin{align*} 1.2 \times 10^2 + 2.4 \times 10^3 \\ &= 1.2 \times
10^2 + 24 \times 10^2 \\ &= (1.2+24) \times 10^2 \\ &= 25.2
\times 10^2 \end{align*}$$
Converting units
You can multiply anything by one without changing it. When you have two
units, divide the unit you wish to go to by the equivalent in the unit
you
are converting from.
Since these two are equal, their ratio is one.
$$ 1 \mu\hbox{m} = 10^{-6} \hbox{m}$$
therefore
$$1 = \frac{1 \mu\hbox{m}}{10^{-6} \hbox{m}}$$
also
$$1 = \frac{10^{-6} \hbox{m}}{1 \mu\hbox{m}}$$
Now you can multiply the value you wish to convert by the ratio, which
is
equal to one. Make sure the unit you wish to end up with is in the
numerator.
The denominator unit cancels with the unit you are converting from and
you
end up with what you want.
$$\begin{align*} 7.9 \times 10^{-5} \hbox{m} \times (1) \\
&= 7.9 \times 10^{-5} \hbox{m} \times \left( \frac{1
\mu\hbox{m}}{10^{-6} \hbox{m}} \right) \\
&=\frac{7.9 \times 10^{-5}}{10^{-6}} \hbox{m}
\frac{\mu\hbox{m}}{\hbox{m}} \\
&= 7.9 \times 10^1 \mu\hbox{m} \\
&= 79 \mu\hbox{m}
\end{align*}$$
Let's do another example with inches. Now if we know how many mm in an
inch,
but the value we wish to convert is in meters, we can convert from
meters
to mm and then from mm to inches by using the trick two times.
1 inch = 25.4 mm, therefore $$ 1 = \frac{1\; \hbox{inch}}{25.4
\;\hbox{mm}} = \frac{25.4 \;\hbox{mm}}{1\; \hbox{inch}} $$
$$\begin{align*}
7.9 \times 10^{-5} \hbox{m}\\
&= 7.9 \times 10^{-5} \hbox{m} \left( \frac{1\; \hbox{inch}}{25.4
\;\hbox{mm}} \right) \left( \frac{10^3\hbox{mm}}{1\; \hbox{m}} \right)
\\
&= \frac{7.9 \times 10^{-5} \times 10^3}{25.4} \hbox{m}
\frac{\hbox{mm}}{\hbox{m}} \frac{\hbox{inch}}{\hbox{mm}}\\
&=0.31 \times 10^{-2} \hbox{inch} = 3.1 \times 10^{-3}\hbox{inch}
\end{align*}$$
That's called 3.1 mil in English.
Back to Main Page