Rotations



L.inear Motion

® Kepler's 2nd Law

® Kqual areas are swept out 1in equal times.
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Central Force

® Kepler's 2nd Law

® Kqual areas are swept out 1in equal times.
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v, 1s the component of velocity perpendicular to r.



Angular Momentum

L=muv,r

® When there are only central forces, L
doesn’t change.

o /. =2m(Area) swept out.

® Angular momentum 1s conserved



Angular momentum

® In terms of angular variables.
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Vector nature of
angular variables
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® use the “right hand rule” to assign a
direction to angular rotations.



Cross Product

® Direction i1s given by “right hand rule”
® Imagine turning a screw from a to b.

® The direction a normal r.h. screw moves 1s
the direction of c.

axb=c .
\ area of parallelogram = absin ¢
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Angular Momentum

® Defines as a vector (or cross) product of

r and p.
D =mv ;
L,
L=rxp r m
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Kinetic Energy

K =1my® = (émrz)wZ
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Moment of =
Inertia”2 m
I =mr
K =1lw’
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Analogous to K = Imv



Rigid Body

Everything’s all stuck together.

W 1s the same for all the m’s
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Moment of Inertia

In general

I = frzdm = fff r'o(x,y,z)dxdydz

Where p(x,y,z) is the mass density.

I depends on the reference point x.



M=mi+tma+
ycm S miyi
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A natural reference point for [ is the centre of mass.
That’s the points the object would rotate about in free
space.



Parallel Axis
Theorem

I =1+ Md?



