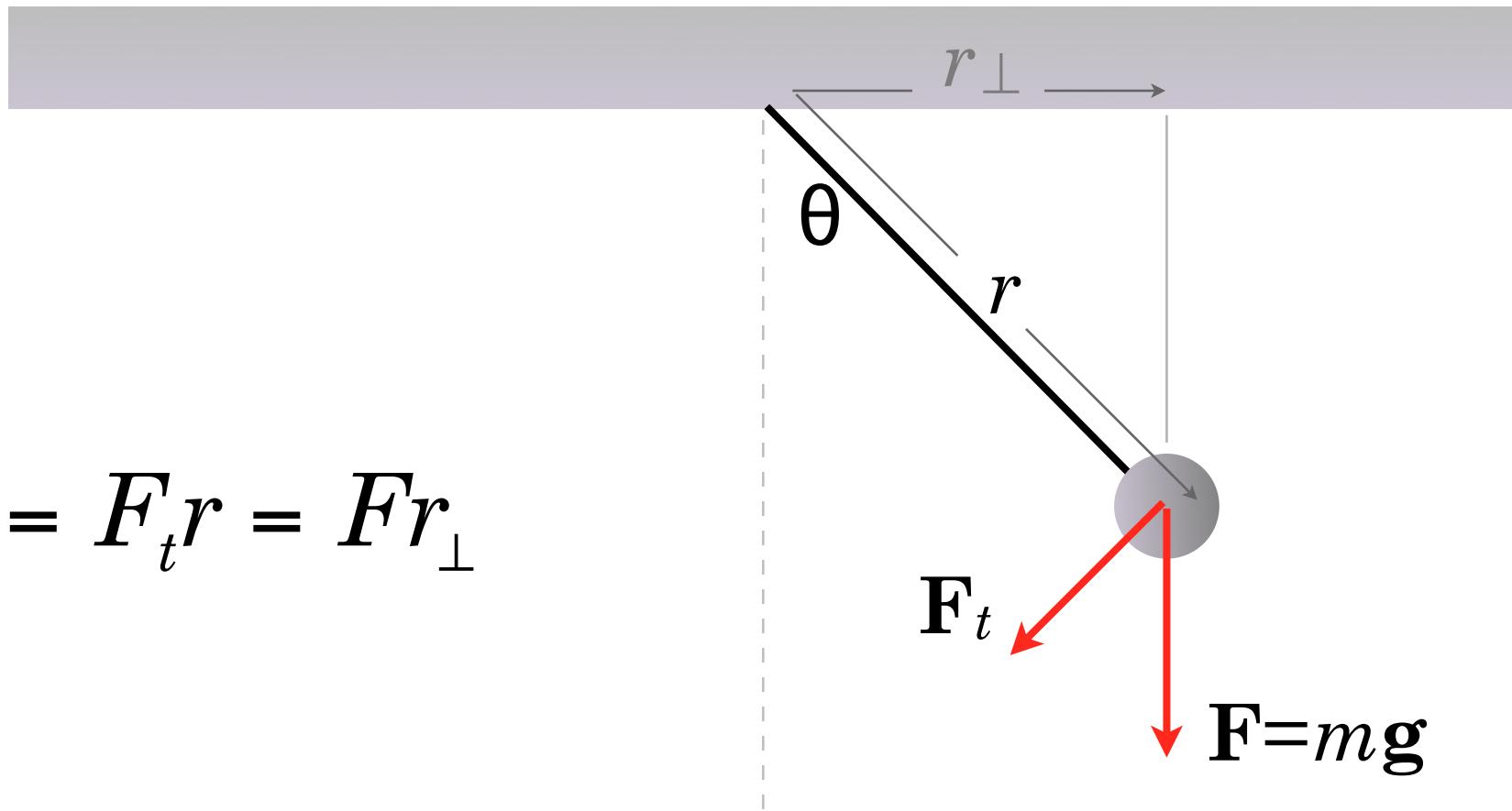


Torque

Pendulum

$$\tau = F_t r = F r_\perp$$

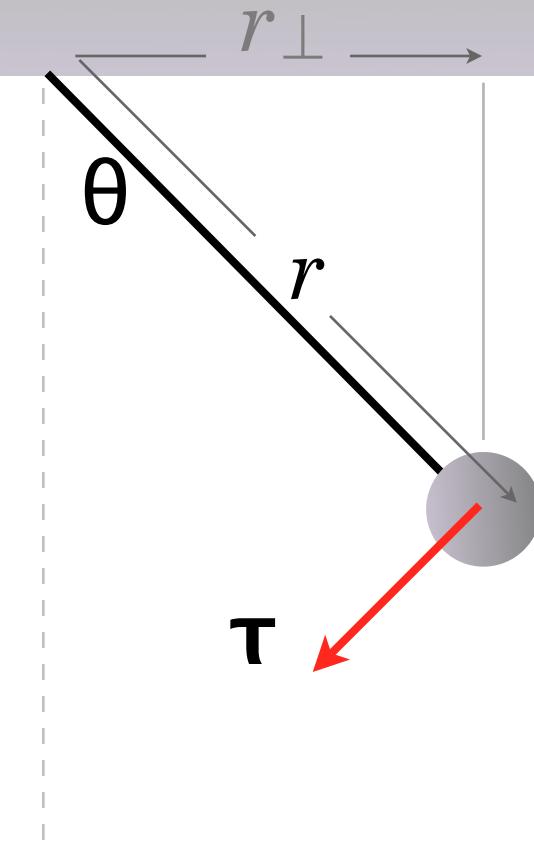


Pendulum

$$F_t = ma$$

$$\frac{\tau}{r} = \frac{I}{r^2} \alpha \cancel{r}$$

$$\tau = I\alpha$$



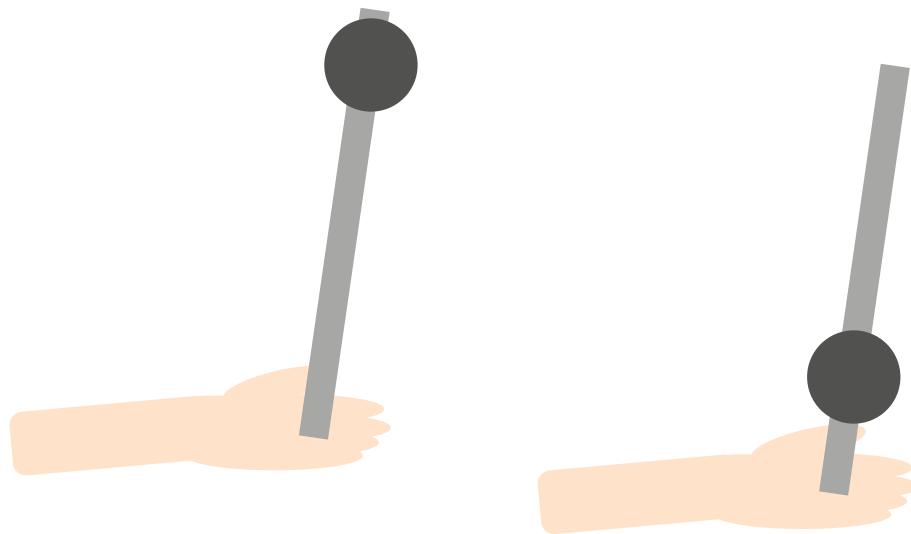
$$F_t = \frac{\tau}{r}$$

$$a = \alpha r$$

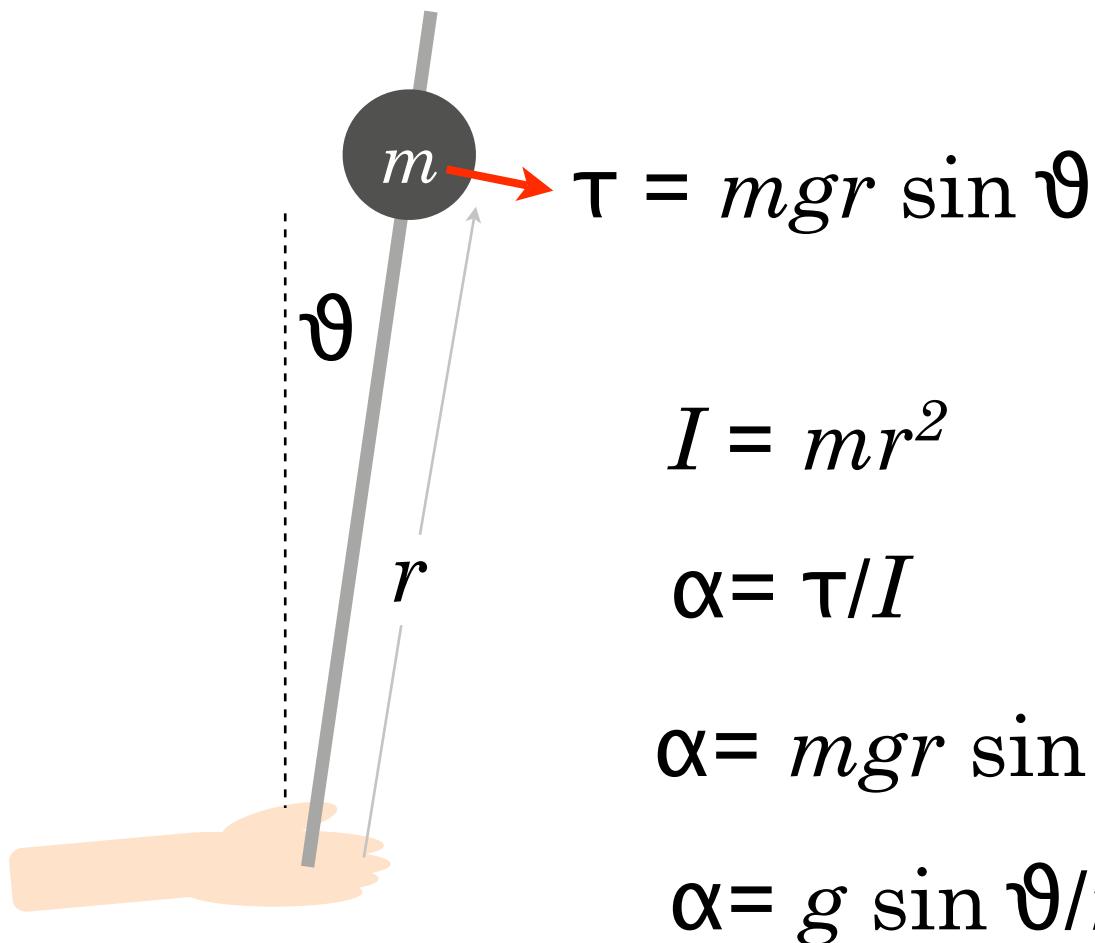
$$m = \frac{I}{r^2}$$

Balancing Stick

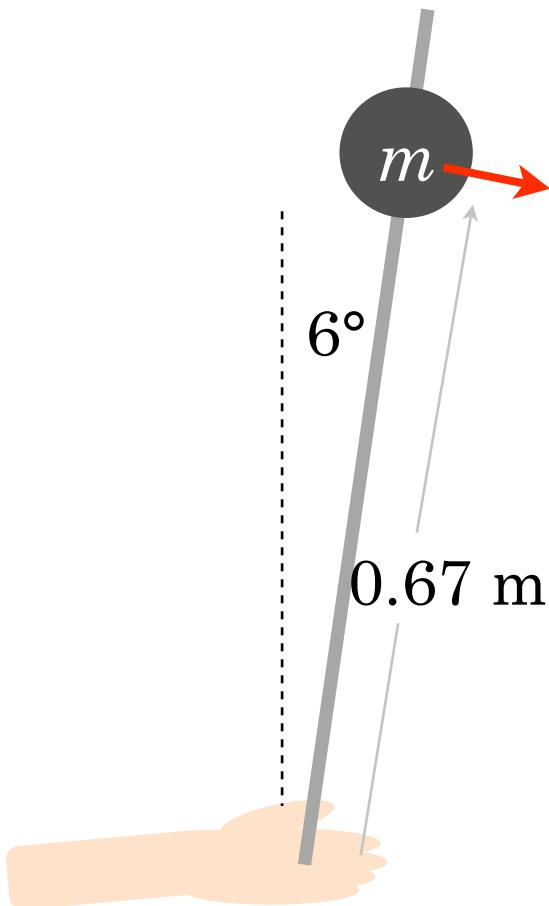
- Which is easier to balance?



Balancing Stick



Balancing Stick

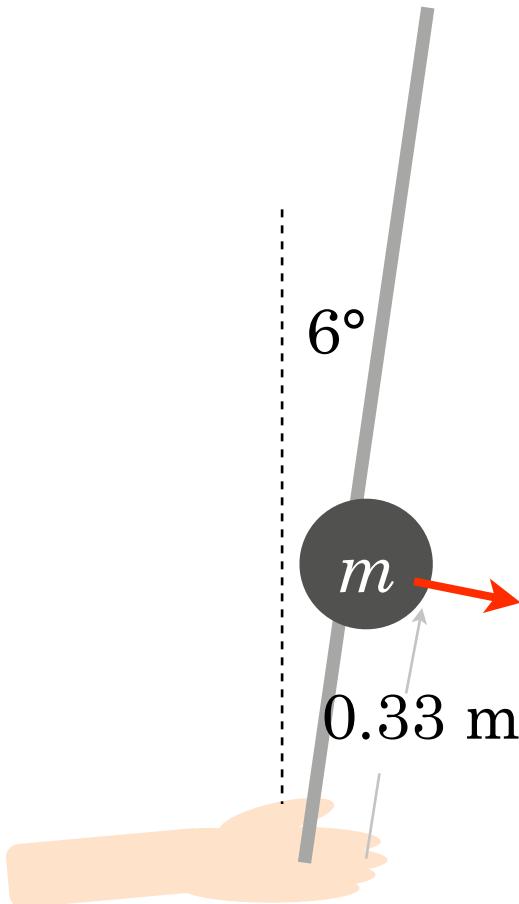


$$\alpha = g \sin \theta / r$$

$$\alpha = (9.8 \text{ m/s}^2)(0.1) / (0.67 \text{ m})$$

$$\alpha = 1.4 \text{ rad/s}^2$$

Balancing Stick



$$\alpha = g \sin \theta / r$$

$$\alpha = (9.8 \text{ m/s}^2)(0.1) / (0.33 \text{ m})$$

$$\alpha = 2.8 \text{ rad/s}^2$$

- Mass near bottom:

$$\alpha = 2.8 \text{ rad/s}^2$$

- Mass near top:

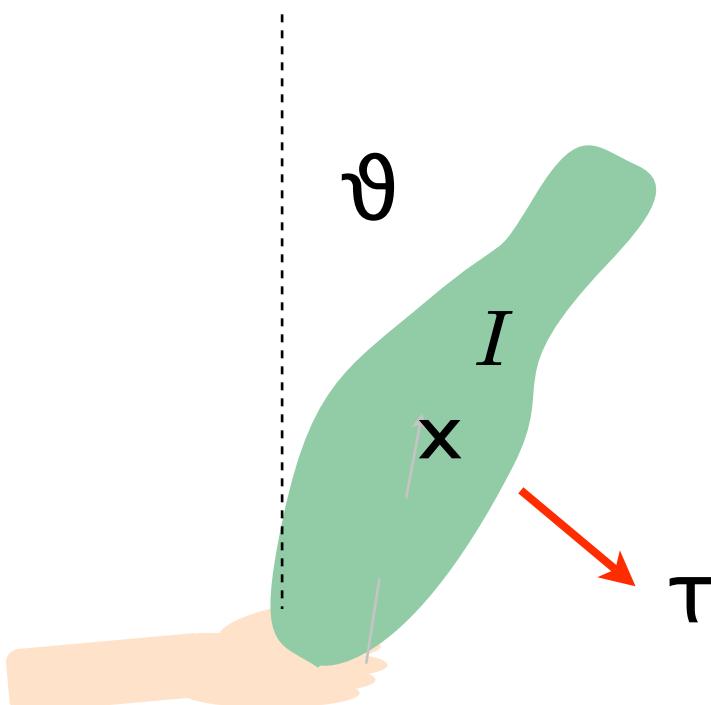
$$\alpha = 1.4 \text{ rad/s}^2$$

- The stick falls more slowly when the mass is near the TOP.

Any rigid object...

- Torque from gravity acts on centre of mass
- All particles in the object move at same ω
- Internal forces on particles occur in action-reaction pairs.
- Can show:

$$I = \alpha \tau \text{ for any rigid body.}$$



Analogy

Pure Translation (x axis)		Pure Rotation (Symmetry about a Fixed Rotation Axis)	
Position component	x	Rotational position component	θ
Velocity component	$v_x = dx/dt$	Rotational velocity component	$\omega = d\theta/dt$
Acceleration	$a_x = dv_x/dt$	Rotational acceleration component	$\alpha = d\omega/dt$
Mass	m	Rotational inertia	I
Newton's Second Law	$F_x^{\text{net}} = ma_x$	Newton's Second Law	$\tau^{\text{net}} = I\alpha$
Work	$W = \int F_x dx$	Work	$W = \int \tau d\theta$
Kinetic energy	$K = \frac{1}{2}mv_x^2$	Kinetic energy	$K = \frac{1}{2}I\omega^2$
Power	$P = F_x v_x$	Power	$P = \tau\omega$
Work-kinetic energy theorem	$W = \Delta K$	Work-kinetic energy theorem	$W^{\text{rot}} = \Delta K^{\text{rot}}$