
27.8. Model: The rods are thin. Assume that the charge lies along a line. 
Visualize:  

 
The electric field of the positively charged glass rod points away from the glass rod, whereas the electric field of 
the negatively charged plastic rod points toward the plastic rod. The electric field strength is the magnitude of the 
electric field and is always positive. 
Solve: Example 27.3 shows that the electric field strength in the plane that bisects a charged rod is 
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The electric field from the glass rod at r = 1 cm from the glass rod is 
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The electric fields from the glass rod at r = 2 cm and r = 3 cm are 50.835 10  N/C×  and 50.514 10  N/C.×  The 
electric field from the plastic rod at distances 1 cm, 2 cm, and 3 cm from the plastic rod are the same as for the 
glass rod. Point P1 is 1.0 cm from the glass rod and is 3.0 cm from the plastic rod, point P2 is 2 cm from both 
rods, and point P3 is 3 cm from the glass rod and 1 cm from the plastic rod. Because the direction of the electric 
fields at P1 is the same, the net electric field strength 1 cm from the glass rod is the sum of the fields from the 
glass rod at 1 cm and the plastic rod at 3 cm. Thus 

 At 1.0 cm 5 5 51.765 10  N/C  0.514 10  N/C 2.3 10  N/CE = × + × = ×  

 At 2.0 cm 5 5 50.835 10  N/C  0.835 10  N/C 1.67 10  N/CE = × + × = ×  

 At 3.0 cm 5 5 50.514 10  N/C  1.765 10  N/C 2.3 10  N/CE = × + × = ×  

Assess: The electric field strength in the space between the two rods goes through a minimum. This point is 
exactly in the middle of the line connecting the two rods. Also, note that the arrows shown in the figure are not to 
scale. 
 



27.12. Model: Assume that the rings are thin and that the charge lies along circle of radius R. 
Visualize:  

 

Solve: (a) Let the rings be centered on the z-axis. According to Example 27.5, the field of the left ring at z = 10 
cm is 

( )
( )

( )( )( )
( ) ( )

9 2 2 9
41

1 3/ 2 3/ 22 22 2
0

9.0 10  N m /C 0.10 m 20 10  C
1.29 10  N/C

4 0.10 m 0.050 m
z

zQE
z Rπε

−× ×
= = = ×

⎡ ⎤+ +⎣ ⎦

 

That is, ( )4
1 1.29 10  N/C, right .E = ×  Ring 2 has the same quantity of charge and is at the same distance, so it will 

produce a field of the same strength. Because Q2 is positive, 2E  will point to the left. The net field at the 

midpoint between the two rings is 1 2 0E E E= + =  N/C. 
(b) The field of the left ring at z = 0 cm is ( )1 0

z
E =  N/C. The field of the right ring at z = 20 cm to its left is 
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1 2E E E⇒ = +  = 0 N/C + (4.1×103 N/C, left) 

So the electric field strength is 4.1×103 N/C. 
 



27.14. Model: Model each disk as a uniformly charged disk. When the disk is positively charged, the on-
axis electric field of the disk points away from the disk. 
Visualize:  

 
Solve: (a) The surface charge density on the disk is 
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From Equation 27.23, the electric field of the left disk at z = 0.10 m is 
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Hence, 1 (38,000 N/C, right)E = . Similarly, the electric field of the right disk at 0.10 mz =  (to its left) is 

2 (38,000 N/C, left)E = . The net field at the midpoint between the two disks is 1 2 0 N/CE E E= + = . 
(b) The electric field of the left disk at z = 0.050 m is 
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Similarly, the electric field of the right disk at z = 0.15 m (to its left) is ( )4
2 1.85 10  N/C, left .E = ×  The net field 

is thus 

( )4
1 2 8.7 10  N/C, rightE E E= + = ×  

The field strength is 48.7 10  N/C.×  

 



27.22. Model: A uniform electric field causes a charge to undergo constant acceleration. 
Solve: Kinematics yields the acceleration of the electron. 
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The magnitude of the electric field required to obtain this acceleration is 
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27.28. Model: The electric field is that of three point charges q1, q2, and q3. 
Visualize: Please refer to Figure P27.28. Assume the charges are in the x-y plane. The 5.0 nC charge is q1, the 
10 nC charge is q3, and the −5.0 nC charge is q2. The net electric field at the dot is net 1 2 3E E E E= + + . The 
procedure will be to find the magnitudes of the electric fields, to write them in component form, and to add the 
components. 
Solve: (a) The electric field produced by q1 is 
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1E  points away from q1, so in component form 1
ˆ112,500  N/C.E i=  The electric field produced by q2 is 2E =  

28,120 N/C.  2E  points toward q2, so 2
ˆ28,120  N/CE j= . Finally, the electric field produced by q3 is 
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3E  points away from q3 and makes an angle ( )1tan 4/ 2 63.43φ −= = °  with the x-axis. So, 

( )3 3 3
ˆ ˆ ˆ ˆcos sin 20,130 40,250  N/CE E i E j i jφ φ= − = −  

Adding these three vectors gives 

( ) ( )5 4
net 1 2 3

ˆ ˆ ˆ ˆ132,600 12,130  N/C 1.33 10 1.21 10  N/CE E E E i j i j= + + = − = × − ×  

This is in component form. 
(b) The magnitude of the field is 

( ) ( )2 22 2 5
net 132,600 N/C 12,130 N/C 133,200 N/C 1.33 10  N/Cx yE E E= + = + − = = ×  

and its angle from the x-axis is ( )1tan 5.2 .x yE Eθ −= = °  We can also write 5
net (1.33 10  N/C, 5.2  CWE = × °  from the 

-axis).x+  

 



27.46. Model: Assume that the semicircular rod is thin and that the charge lies along the semicircle of radius R. 
Visualize:  

 
The origin of the coordinate system is at the center of the circle. Divide the rod into many small segments of 
charge Δq and arc length Δs. Segment i creates a small electric field iE  at the origin. The line from the origin to 
segment i makes an angle θ  with the x-axis. 
Solve: Because every segment i at an angle θ  above the axis is matched by segment j at angle θ  below the axis, 
the  
y-components of the electric fields will cancel when the field is summed over all segments. This leads to a net 
field pointing to the right with 
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Note that angle θ i depends on the location of segment i. Now all segments are at the same distance ri = R from the 
origin, so 
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The linear charge density on the rod is λ = Q/L, where L is the rod’s length. This allows us to relate charge Δq to 
the arc length Δs through 

Δq = λ Δs = (Q /L)Δs 
Thus, the net field at the origin is 
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The sum is over all the segments on the rim of a semicircle, so it will be easier to use polar coordinates and 
integrate over θ  rather than do a two-dimensional integral in x and y. We note that the arc length Δs is related to 
the small angle Δθ  by Δs = RΔθ , so 
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With Δθ  → dθ , the sum becomes an integral over all angles forming the rod. θ  varies from Δθ  = −π/2 to θ  = 
+π/2. So we finally arrive at 
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Since we’re given the rod’s length L and not its radius R, it will be convenient to let R = L/π. So our final 
expression for ,E  now including the vector information, is 
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(b) Substituting into the above expression, 
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27.52. Model: The electric field is uniform inside the capacitor, so constant-acceleration kinematic equations 
apply to the motion of the proton. 
Visualize:  

 

Solve: From Equation 27.29, the electric field between the parallel plates ( )0
ˆ.E jη ε=  The force on the proton is 
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Using the kinematic equation ( ) ( )21
1 0 0 1 0 1 02 ,y yy y v t t a t t= + − + −  

( )( ) ( )1 0 1 0 1 0
10 m/s
2 yy y y t t a t tΔ = − = − + − ( )2

1 0
0

1
2
q t t
m
η
ε

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

To determine t1 − t0, we consider the horizontal motion of the proton. The proton travels a distance of 2.0 cm at a 
constant speed of 1.0 × 106 m/s. The velocity is constant because the only force acting on the proton is due to the 
field between the plate along the y-direction. Using the same kinematic equation, 
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