

29.28. Model: The electric potential at the dot is the sum of the potentials due to each charge.

Visualize: Please refer to Figure EX29.28.

Solve: The electric potential at the dot is

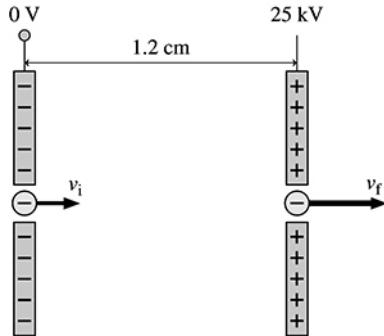
$$\begin{aligned} V &= \frac{1}{4\pi\epsilon_0} \frac{q_1}{r_1} + \frac{1}{4\pi\epsilon_0} \frac{q_2}{r_2} + \frac{1}{4\pi\epsilon_0} \frac{q_3}{r_3} \\ &= (9.0 \times 10^9 \text{ Nm}^2/\text{C}^2) \left[\frac{q}{(0.020 \text{ m})^2 + (0.040 \text{ m})^2} + \frac{-5.0 \times 10^{-9} \text{ C}}{0.040 \text{ m}} + \frac{5.0 \times 10^{-9} \text{ C}}{0.020 \text{ m}} \right] = 3140 \text{ V} \end{aligned}$$

Solving yields $q = 1.00 \times 10^{-8} \text{ C} = 10.0 \text{ nC}$.

Assess: Potential is a scalar quantity, so we found the net potential by adding three scalar quantities.

29.46. Model: Energy is conserved.

Visualize:



Solve: (a) The electric field inside a parallel-plate capacitor is constant with strength

$$E = \frac{\Delta V}{d} = \frac{(25 \times 10^3 \text{ V})}{0.012 \text{ m}} = 2.1 \times 10^6 \text{ V/m.}$$

(b) Assuming the initial velocity is zero, energy conservation yields

$$\begin{aligned} U_i &= K_f + U_f \\ 0 &= \frac{1}{2} m_e v_f^2 + (-e)(Ed) \\ \Rightarrow v_f &= \sqrt{\frac{2(1.60 \times 10^{-19} \text{ C})(2.1 \times 10^6 \text{ V/m})(0.012 \text{ m})}{9.11 \times 10^{-31} \text{ kg}}} = 9.4 \times 10^7 \text{ m/s} \end{aligned}$$

Assess: This speed is about 31% the speed of light. At that speed, relativity must be taken into account.

30.14. Model: The electric field is the negative of the derivative of the potential function.

Solve: (a) From Equation 30.11, the component of the electric field in the s -direction is $E_s = -dV/ds$. For the given potential,

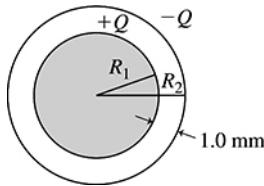
$$\frac{dV}{dx} = \frac{d}{dx}(100x^2 \text{ V}) = 200x \frac{\text{V}}{\text{m}} \Rightarrow E_x = -200x \text{ V/m}$$

At $x = 0 \text{ m}$, $E_x = 0 \text{ V/m}$.

(b) At $x = 1 \text{ m}$, $E_x = -200(1) \text{ V/m} = -200 \text{ V/m}$.

Assess: The potential increases with x , so the electric field must point in the $-x$ -direction.

30.56. Model: Capacitance is a geometric property of two electrodes.
Visualize:



Solve: The ratio of the charge to the potential difference is called the capacitance: $C = Q/\Delta V_C$. The potential difference across the capacitor is

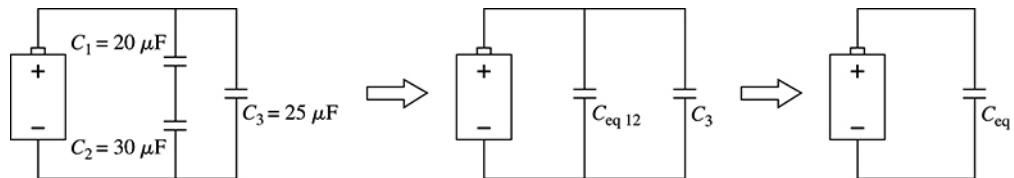
$$\begin{aligned}\Delta V_C &= \frac{1}{4\pi\epsilon_0} \frac{Q}{R_1} - \frac{1}{4\pi\epsilon_0} \frac{Q}{R_2} = \frac{Q}{4\pi\epsilon_0} \left[\frac{1}{R_1} - \frac{1}{R_2} \right] \\ \Rightarrow C &= 4\pi\epsilon_0 \left[\frac{1}{R_1} - \frac{1}{R_2} \right]^{-1} = 4\pi\epsilon_0 \frac{R_1 R_2}{R_2 - R_1} = 4\pi\epsilon_0 \frac{R_1 R_2}{1.0 \times 10^{-3} \text{ m}} = 100 \times 10^{-12} \text{ F} \\ \Rightarrow R_1 R_2 &= (100 \times 10^{-12} \text{ F})(1.0 \times 10^{-3} \text{ m})(9.0 \times 10^9 \text{ N m}^2/\text{C}^2) = 900 \times 10^{-6} \text{ m}^2\end{aligned}$$

Using $R_2 = R_1 + 1.0 \text{ mm}$,

$$\begin{aligned}R_1(R_1 + 1.0 \times 10^{-3} \text{ m}) &= 900 \times 10^{-6} \text{ m} \Rightarrow R_1^2 + (1.0 \times 10^{-3} \text{ m})R_1 - 900 \times 10^{-6} \text{ m} = 0 \\ \Rightarrow R_1 &= \frac{-1.0 \times 10^{-3} \text{ m} \pm \sqrt{(1.0 \times 10^{-3} \text{ m})^2 + 3600 \times 10^{-6} \text{ m}^2}}{2} = 0.0295 \text{ m} = 2.95 \text{ cm}\end{aligned}$$

The outer radius is $R_2 = R_1 + 0.001 \text{ m} = 0.0305 \text{ m} = 3.05 \text{ cm}$. So, the diameters are 5.9 cm and 6.1 cm.

30.58. Visualize:



The pictorial representation shows how to find the equivalent capacitance of the three capacitors shown in the figure.

Solve: Because C_1 and C_2 are in series, their equivalent capacitance $C_{\text{eq } 12}$ is

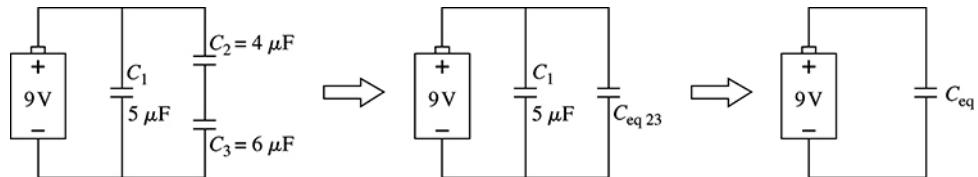
$$\frac{1}{C_{\text{eq } 12}} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{1}{20 \mu\text{F}} + \frac{1}{30 \mu\text{F}} = \frac{1}{12 \mu\text{F}} \Rightarrow C_{\text{eq } 12} = 12 \mu\text{F}$$

Then, $C_{\text{eq } 12}$ and C_3 are in parallel. So,

$$C_{\text{eq}} = C_{\text{eq } 12} + C_3 = 12 \mu\text{F} + 25 \mu\text{F} = 37 \mu\text{F}$$

30.62. Model: Assume the battery is an ideal battery.

Visualize:



The pictorial representation shows how to find the equivalent capacitance of the three capacitors shown in the figure.

Solve: Because C_2 and C_3 are in series,

$$\frac{1}{C_{eq,23}} = \frac{1}{C_2} + \frac{1}{C_3} = \frac{1}{4 \mu F} + \frac{1}{6 \mu F} = \frac{10}{24} (\mu F)^{-1} \Rightarrow C_{eq,23} = \frac{24}{10} \mu F = 2.4 \mu F$$

$C_{eq,23}$ and C_1 are in parallel, so

$$C_{eq} = C_{eq,23} + C_1 = 2.4 \mu F + 5 \mu F = 7.4 \mu F$$

A potential difference of $\Delta V_C = 9$ V across a capacitor of equivalent capacitance $7.4 \mu F$ produces a charge

$$Q = C_{eq} \Delta V_C = (7.4 \mu F)(9 V) = 66.6 \mu C$$

Because C_{eq} is a parallel combination of C_1 and $C_{eq,23}$, these capacitors have $\Delta V_1 = \Delta V_{eq,23} = \Delta V_C = 9$ V. Thus the charges on these two capacitors are

$$Q_1 = (5 \mu F)(9 V) = 45 \mu C \quad Q_{eq,23} = (2.4 \mu F)(9 V) = 21.6 \mu C$$

Because $Q_{eq,23}$ is due to a series combination of C_2 and C_3 , $Q_2 = Q_3 = 21.6 \mu C$. This means

$$\Delta V_2 = \frac{Q_2}{C_2} = \frac{21.6 \mu C}{4 \mu F} = 5.4 V \quad \Delta V_3 = \frac{Q_3}{C_3} = \frac{21.6 \mu C}{6 \mu F} = 3.6 V$$

In summary, $Q_1 = 45 \mu C$, $V_1 = 9$ V; $Q_2 = 21.6 \mu C$, $V_2 = 5.4$ V; and $Q_3 = 21.6 \mu C$, $V_3 = 3.6$ V.

30.64. Model: Capacitance is a geometric property.

Visualize: Please refer to Figure P30.64. Shells R_1 and R_2 are a spherical capacitor C . Shells R_2 and R_3 are a spherical capacitor C' . These two capacitors are in series.

Solve: The ratio of the charge to the potential difference is called the capacitance: $C = Q/\Delta V_c$. The potential differences across the capacitors C and C' are

$$\begin{aligned}\Delta V_c &= \frac{1}{4\pi\epsilon_0} \frac{Q}{R_1} - \frac{1}{4\pi\epsilon_0} \frac{Q}{R_2} = \frac{Q}{4\pi\epsilon_0} \left[\frac{1}{R_1} - \frac{1}{R_2} \right] \\ \Delta V_{C'} &= \frac{1}{4\pi\epsilon_0} \frac{Q}{R_2} - \frac{1}{4\pi\epsilon_0} \frac{Q}{R_3} = \frac{Q}{4\pi\epsilon_0} \left[\frac{1}{R_2} - \frac{1}{R_3} \right] \\ \Rightarrow C &= (4\pi\epsilon_0) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)^{-1} \quad C' = (4\pi\epsilon_0) \left(\frac{1}{R_2} - \frac{1}{R_3} \right)^{-1}\end{aligned}$$

Because these two capacitors are in series,

$$\begin{aligned}\frac{1}{C_{\text{net}}} &= \frac{1}{C} + \frac{1}{C'} = \frac{1}{4\pi\epsilon_0} \left(\frac{1}{R_1} - \frac{1}{R_2} + \frac{1}{R_2} - \frac{1}{R_3} \right) = \frac{1}{4\pi\epsilon_0} \left(\frac{R_3 - R_1}{R_1 R_3} \right) \\ C_{\text{net}} &= 4\pi\epsilon_0 \left(\frac{R_1 R_3}{R_3 - R_1} \right) = \frac{1}{9.0 \times 10^9 \text{ N m}^2/\text{C}^2} \left[\frac{(0.010 \text{ m})(0.030 \text{ m})}{0.030 \text{ m} - 0.010 \text{ m}} \right] = 1.67 \times 10^{-12} \text{ F} = 1.67 \text{ pF}\end{aligned}$$

Assess: C_{net} depends on only the inner and outer shells, not on R_2 .