
29.28. Model: The electric potential at the dot is the sum of the potentials due to each charge. 
Visualize: Please refer to Figure EX29.28. 
Solve: The electric potential at the dot is 
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Solving yields q = 1.00×10–8 C = 10.0 nC. 
Assess: Potential is a scalar quantity, so we found the net potential by adding three scalar quantities. 
 



29.46. Model: Energy is conserved. 

Visualize: 

 
Solve: (a) The electric field inside a parallel-plate capacitor is constant with strength 
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(b) Assuming the initial velocity is zero, energy conservation yields 
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Assess: This speed is about 31% the speed of light.  At that speed, relativity must be taken into account. 
 



30.14. Model: The electric field is the negative of the derivative of the potential function. 
Solve: (a) From Equation 30.11, the component of the electric field in the s-direction is s .E dV ds= −  For the 
given potential, 
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At x = 0 m, Ex = 0 V/m. 
(b) At x = 1 m, Ex = −200 (1) V/m = −200 V/m. 
Assess: The potential increases with x, so the electric field must point in the −x-direction. 
 



30.56. Model: Capacitance is a geometric property of two electrodes. 
Visualize: 

 

Solve: The ratio of the charge to the potential difference is called the capacitance: C .C Q V= Δ  The potential 
difference across the capacitor is 

C
0 1 0 2 0 1 2

1 1 1 1
4 4 4

Q Q QV
R R R Rπε πε πε

⎡ ⎤
Δ = − = −⎢ ⎥

⎣ ⎦
 

1
121 2 1 2

0 0 0 3
1 2 2 1

1 14 4 4 100 10  F
1.0 10  m

R R R RC
R R R R

πε πε πε
−

−
−

⎡ ⎤
⇒ = − = = = ×⎢ ⎥ − ×⎣ ⎦

 

( )( )( )12 3 9 2 2 6 2
1 2 100 10  F 1.0 10  m 9.0 10  N m /C 900 10  mR R − − −⇒ = × × × = ×  

Using R2 = R1 + 1.0 mm, 
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The outer radius is R2 = R1 + 0.001 m = 0.0305 m = 3.05 cm. So, the diameters are 5.9 cm and 6.1 cm. 
 



30.58. Visualize:  

 
The pictorial representation shows how to find the equivalent capacitance of the three capacitors shown in the 
figure. 
Solve: Because C1 and C2 are in series, their equivalent capacitance Ceq 12 is 
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Then, Ceq 12 and C3 are in parallel. So, 

Ceq = Ceq 12 + C3 = 12 μF + 25 μF = 37 μF 

 



30.62. Model: Assume the battery is an ideal battery. 
Visualize: 

 
The pictorial representation shows how to find the equivalent capacitance of the three capacitors shown in the 
figure. 
Solve: Because C2 and C3 are in series,  
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Ceq 23 and C1 are in parallel, so  

Ceq = Ceq 23 + C1 = 2.4 μF + 5 μF = 7.4 μF 

A potential difference of ΔVC = 9 V across a capacitor of equivalent capacitance 7.4 μF produces a charge  

Q = CeqΔVC = (7.4 μF)(9 V) = 66.6 μC 

Because Ceq is a parallel combination of C1 and Ceq 23, these capacitors have 1 eq 23 C 9 V.V V VΔ = Δ = Δ =  Thus the 
charges on these two capacitors are 

Q1 = (5 μF)(9 V) = 45 μC  Qeq 23 = (2.4 μF)(9 V) = 21.6 μC 

Because Qeq 23 is due to a series combination of C2 and C3, Q2 = Q3 = 21.6 μC. This means 
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In summary, Q1 = 45 μC, V1 = 9 V; Q2 = 21.6 μC, V2 = 5.4 V; and Q3 = 21.6 μC, V3 = 3.6 V. 
 



30.64. Model: Capacitance is a geometric property. 
Visualize: Please refer to Figure P30.64. Shells R1 and R2 are a spherical capacitor C. Shells R2 and R3 are a 
spherical capacitor C′. These two capacitors are in series. 
Solve: The ratio of the charge to the potential difference is called the capacitance: C .C Q V= Δ  The potential 
differences across the capacitors C and C′ are 
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Because these two capacitors are in series,  
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Assess: Cnet depends on only the inner and outer shells, not on R2. 
 


