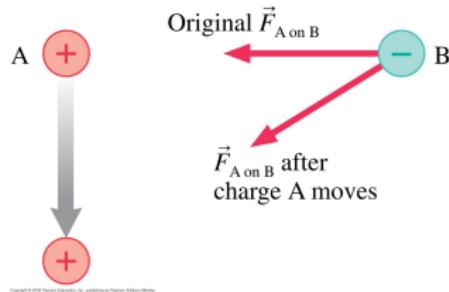


The Field Model (26.5)

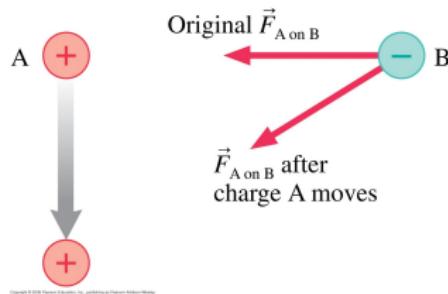
- How does the electric force get propagated from one particle to another?



Copyright © 2010 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

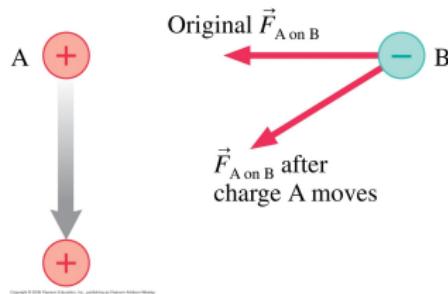
The Field Model (26.5)

- How does the electric force get propagated from one particle to another?
- Newton's theories were not time-dependent - instantaneous action at a distance



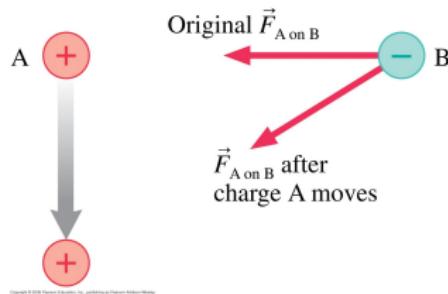
The Field Model (26.5)

- How does the electric force get propagated from one particle to another?
- Newton's theories were not time-dependent - instantaneous action at a distance
- Instantaneous action at a distance is a bit hard to believe!



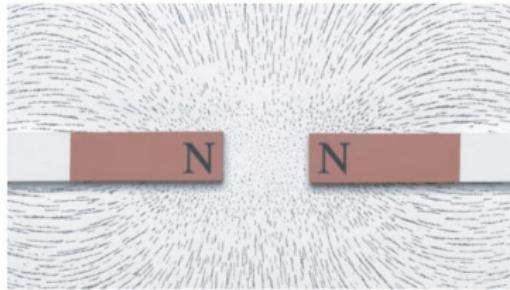
The Field Model (26.5)

- How does the electric force get propagated from one particle to another?
- Newton's theories were not time-dependent - instantaneous action at a distance
- Instantaneous action at a distance is a bit hard to believe!
- What if the two particles below were 100 light-years apart??



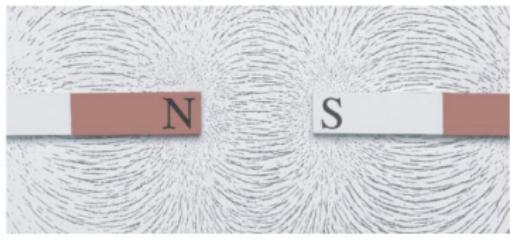
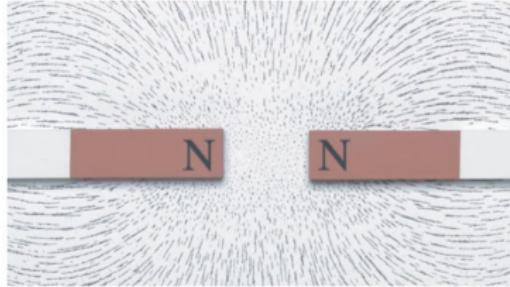
The Field Concept

- Faraday suggested that the space around a charged object was altered. Other charges then interacted with that altered space.



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

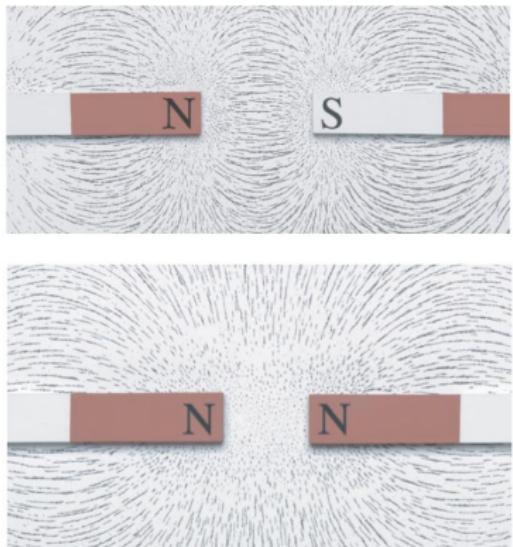
The Field Concept



- Faraday suggested that the space around a charged object was altered. Other charges then interacted with that altered space.
- The iron filings were reacting to the altered space close to the magnet...they were reacting to the magnetic field.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

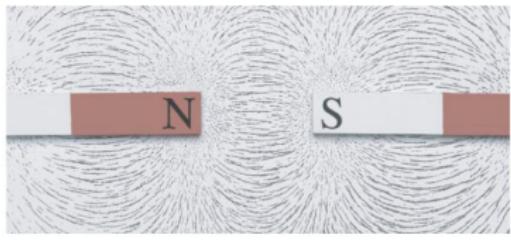
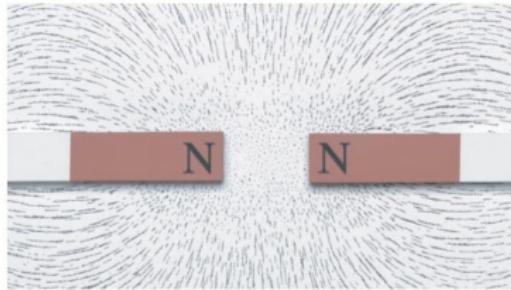
The Field Concept



- Faraday suggested that the space around a charged object was altered. Other charges then interacted with that altered space.
- The iron filings were reacting to the altered space close to the magnet...they were reacting to the magnetic field.
- The field exists everywhere in space. Electric fields, magnetic fields, gravitational fields are some examples.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The Field Concept



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

- Faraday suggested that the space around a charged object was altered. Other charges then interacted with that altered space.
- The iron filings were reacting to the altered space close to the magnet...they were reacting to the magnetic field.
- The field exists everywhere in space. Electric fields, magnetic fields, gravitational fields are some examples.
- We talked about light being a “self-sustaining oscillation of the EM field”

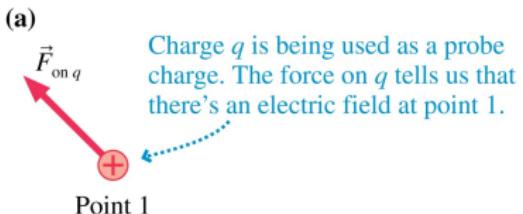
The Electric Field: video

The video shown in today's class can be found at

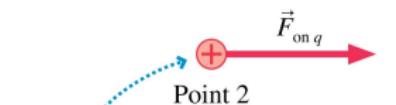
<http://www.learner.org/resources/series42.html>

it is episode 29.

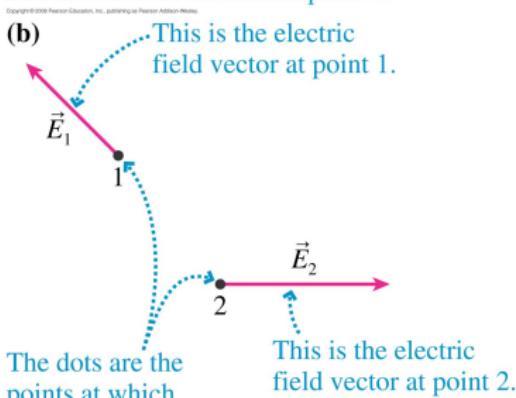
The Electric Field



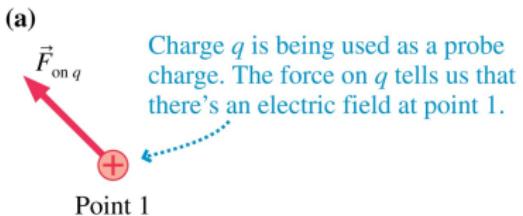
- We will describe a **field model** of electric interactions.



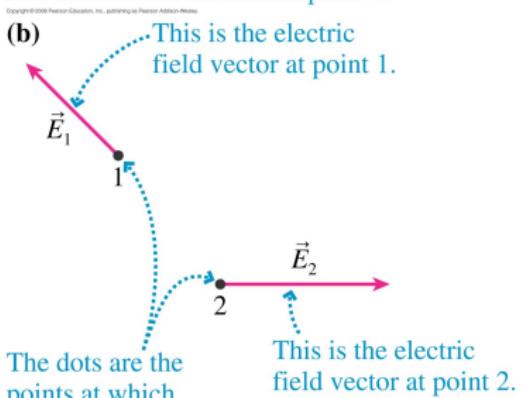
Now charge q is placed at point 2. There's also an electric field here that differs from the field at point 1.



The Electric Field

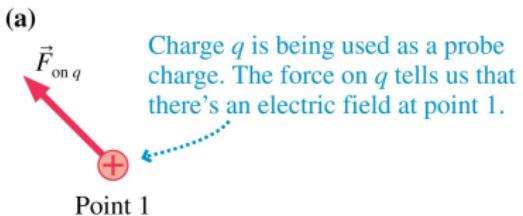


Now charge q is placed at point 2. There's also an electric field here that differs from the field at point 1.

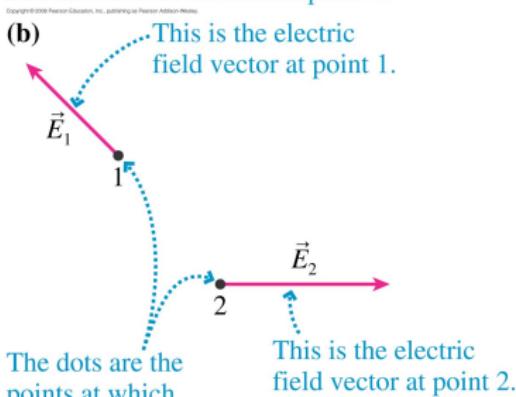


- We will describe a **field model** of electric interactions.
- Source charges alter the space around them creating an electric field \vec{E}

The Electric Field

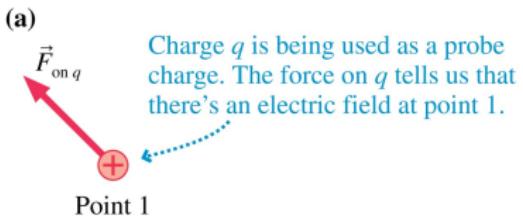
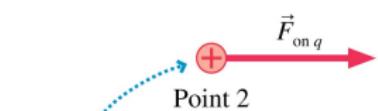


Now charge q is placed at point 2. There's also an electric field here that differs from the field at point 1.

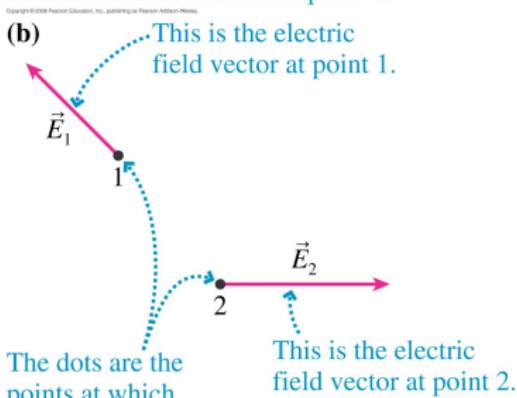


- We will describe a **field model** of electric interactions.
- Source charges alter the space around them creating an electric field \vec{E}
- A separate charge placed in the field experiences a force \vec{F} **exerted on it by the field**.

The Electric Field



Now charge q is placed at point 2. There's also an electric field here that differs from the field at point 1.



- We will describe a **field model** of electric interactions.
- Source charges alter the space around them creating an electric field \vec{E}
- A separate charge placed in the field experiences a force \vec{F} **exerted on it by the field**.
- The field is defined as

$$\vec{E}(x, y, z) \equiv \frac{\vec{F}_{\text{on } q \text{ at } (x, y, z)}}{q}$$

The magnitude of the field is known as the **electric field strength**.

The Electric Field

- We are using q as a test-charge or a probe of the field. You can make a field map by moving the charge around.

The Electric Field

- We are using q as a test-charge or a probe of the field. You can make a field map by moving the charge around.
- The field is the agent that exerts a force on our probe.

The Electric Field

- We are using q as a test-charge or a probe of the field. You can make a field map by moving the charge around.
- The field is the agent that exerts a force on our probe.
- This is a **vector field**. That means that we assign a vector to every point in space.

The Electric Field

- We are using q as a test-charge or a probe of the field. You can make a field map by moving the charge around.
- The field is the agent that exerts a force on our probe.
- This is a **vector field**. That means that we assign a vector to every point in space.
- If q is positive, the electric field vector points in the same direction as the force on the charge.

The Electric Field

- We are using q as a test-charge or a probe of the field. You can make a field map by moving the charge around.
- The field is the agent that exerts a force on our probe.
- This is a **vector field**. That means that we assign a vector to every point in space.
- If q is positive, the electric field vector points in the same direction as the force on the charge.
- The electric field does not depend on the size of q . There is a q in both the numerator and denominator of

$$\vec{E}(x, y, z) \equiv \frac{\vec{F}_{on\ q} at(x, y, z)}{q}$$

which cancel out.

The Electric Field

- We are using q as a test-charge or a probe of the field. You can make a field map by moving the charge around.
- The field is the agent that exerts a force on our probe.
- This is a **vector field**. That means that we assign a vector to every point in space.
- If q is positive, the electric field vector points in the same direction as the force on the charge.
- The electric field does not depend on the size of q . There is a q in both the numerator and denominator of

$$\vec{E}(x, y, z) \equiv \frac{\vec{F}_{\text{on } q \text{ at } (x, y, z)}}{q}$$

which cancel out.

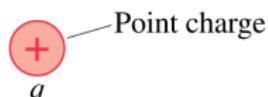
- Often we want to calculate the force on a test charge like

$$\vec{F}_{\text{on } q} = q \vec{E}$$

The Electric Field of a Point Charge

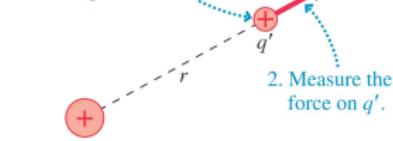
(a)

What is the electric field of q at this point?



Copyright 2008 Pearson Education, Inc. Publishing as Pearson Addison Wesley.

(b) 1. Place q' at the point to probe the field.



Copyright 2008 Pearson Education, Inc. Publishing as Pearson Addison Wesley.

(c)

3. The electric field is
 $\vec{E} = \vec{F}_{\text{on } q'}/q'$
It is a vector in the direction of $\vec{F}_{\text{on } q'}$.

Copyright 2008 Pearson Education, Inc. Publishing as Pearson Addison Wesley.

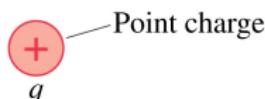
- Assuming both charges are positive, q' will be repelled from q according to Coulomb's Law

$$F_{\text{on } q'} = \frac{1}{4\pi\epsilon_0} \frac{qq'}{r^2}$$

The Electric Field of a Point Charge

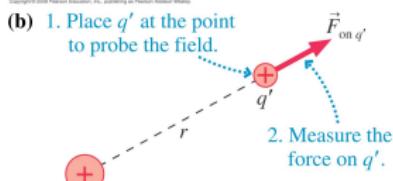
(a)

What is the electric field of q at this point?



Copyright 2008 Pearson Education, Inc. Publishing as Pearson Addison Wesley.

(b) 1. Place q' at the point to probe the field.



Copyright 2008 Pearson Education, Inc. Publishing as Pearson Addison Wesley.

(c)

3. The electric field is $\vec{E} = \vec{F}_{\text{on } q'}/q'$
It is a vector in the direction of $\vec{F}_{\text{on } q'}$.

Copyright 2008 Pearson Education, Inc. Publishing as Pearson Addison Wesley.

- Assuming both charges are positive, q' will be repelled from q according to Coulomb's Law

$$F_{\text{on } q'} = \frac{1}{4\pi\epsilon_0} \frac{qq'}{r^2}$$

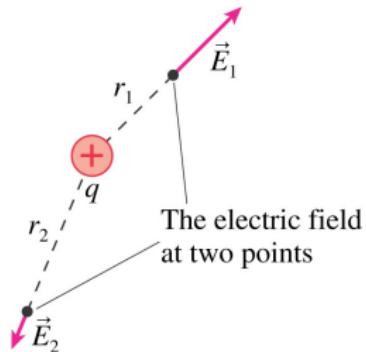
- So, the electric field is pointing away from q as well and is:

$$E(x, y, z) = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$$

These equations represent the **magnitudes** of the electric force and electric field respectively.

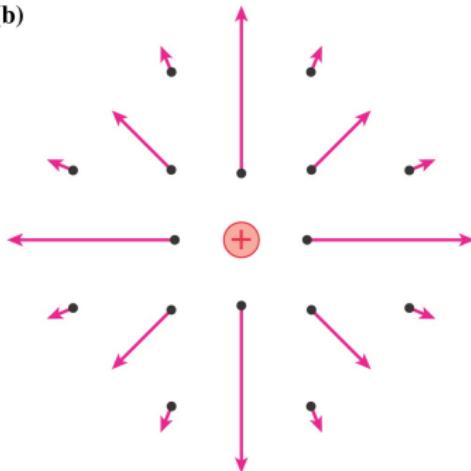
The Electric Field of a Point Charge

(a)



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

(b)

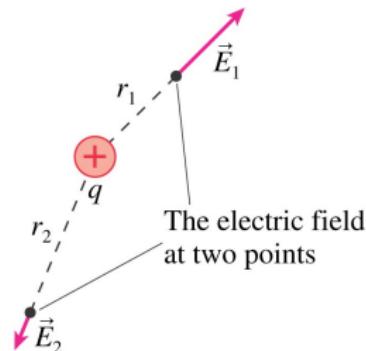


Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

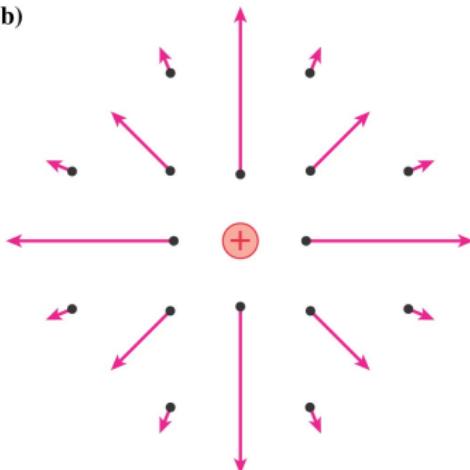
- The field strength goes like $1/r^2$

The Electric Field of a Point Charge

(a)



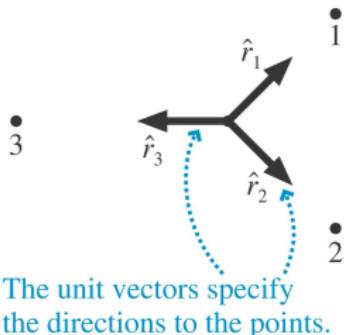
(b)



- The field strength goes like $1/r^2$
- So, if we draw the \vec{E} at each point in space the lengths of the vectors will be very different from each other.

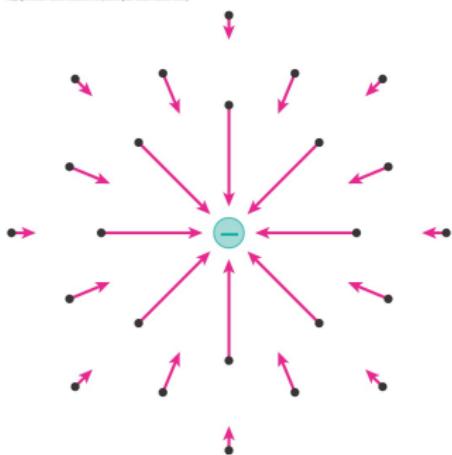
Unit Vector Notation

(a)



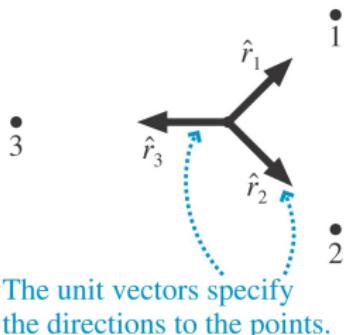
- We need a mathematical way to specify the direction of the field

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison Wesley.



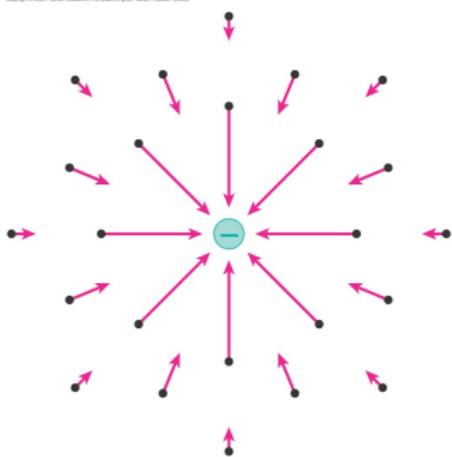
Unit Vector Notation

(a)



- We need a mathematical way to specify the direction of the field
- We will use a **unit vector** in the radial direction

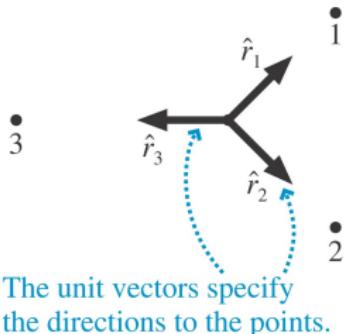
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison Wesley.



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison Wesley.

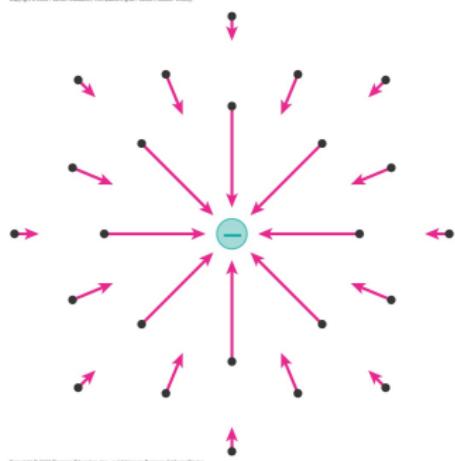
Unit Vector Notation

(a)



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison Wesley.

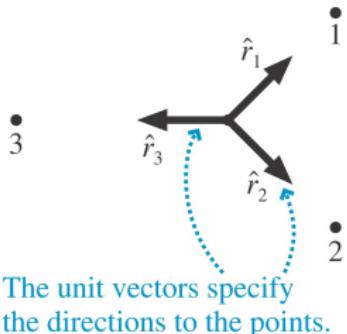
- We need a mathematical way to specify the direction of the field
- We will use a **unit vector** in the radial direction
- Define \hat{r} to be a vector of length 1 from the origin to the point of interest.



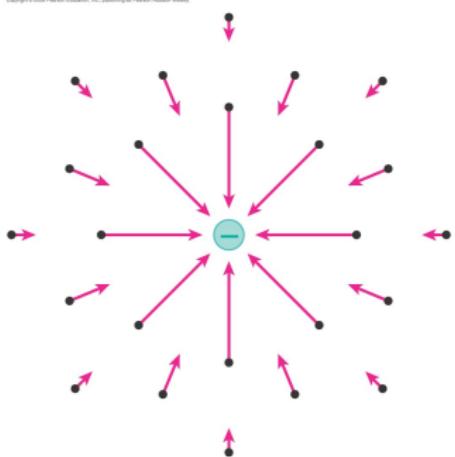
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison Wesley.

Unit Vector Notation

(a)



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison Wesley.



- We need a mathematical way to specify the direction of the field
- We will use a **unit vector** in the radial direction
- Define \hat{r} to be a vector of length 1 from the origin to the point of interest.
- The **vector** electric field can be written as

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$$

The Electric Field (Chapter 27)

- Electric fields are everywhere: natural and manipulated.

The Electric Field (Chapter 27)

- Electric fields are everywhere: natural and manipulated.
- So far we have been drawing electric fields resulting from a single charge. What about complex objects?

The Electric Field (Chapter 27)

- Electric fields are everywhere: natural and manipulated.
- So far we have been drawing electric fields resulting from a single charge. What about complex objects?
- Chapter 27 is mainly about calculating electric fields from complex objects containing many charges.

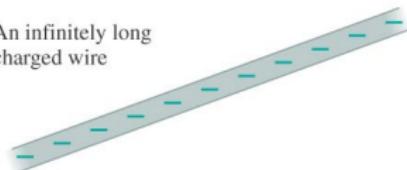
The Electric Field (Chapter 27)

- Electric fields are everywhere: natural and manipulated.
- So far we have been drawing electric fields resulting from a single charge. What about complex objects?
- Chapter 27 is mainly about calculating electric fields from complex objects containing many charges.
- In other words, we will try to calculate realistic electric fields...with some simplifications of course ;-)

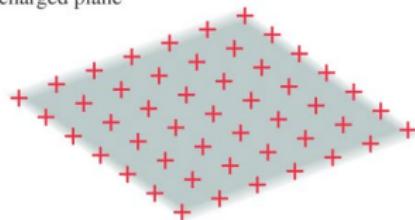
Electric Field Models (27.1)

A point charge

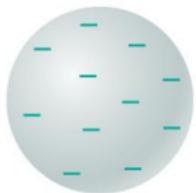
An infinitely long charged wire



An infinitely wide charged plane



A charged sphere



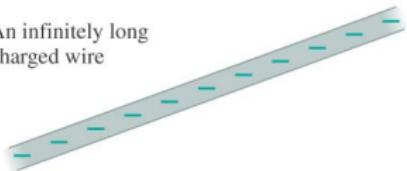
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

- 1 A point charge
- 2 An infinitely long wire
- 3 An infinitely wide charged plane
- 4 A charged sphere

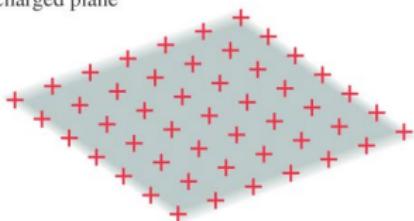
Electric Field Models

A point charge

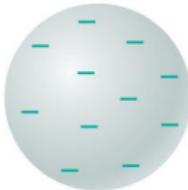
An infinitely long charged wire



An infinitely wide charged plane



A charged sphere



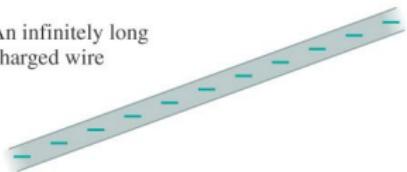
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

- Small objects (or far-away objects) can often be modeled as points or spheres

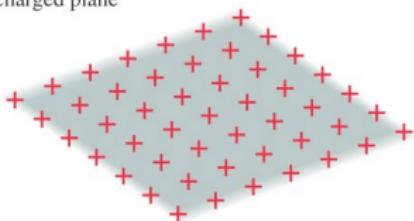
Electric Field Models

A point charge

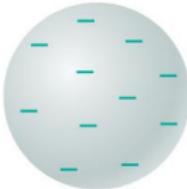
An infinitely long charged wire



An infinitely wide charged plane



A charged sphere



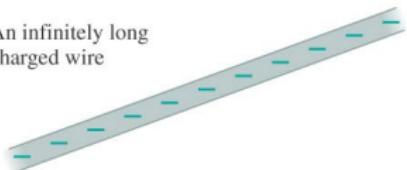
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

- Small objects (or far-away objects) can often be modeled as points or spheres
- Wires or planes can be often modeled as infinite, even if they aren't.

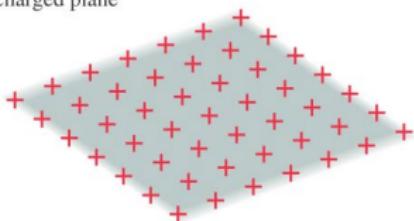
Electric Field Models

A point charge

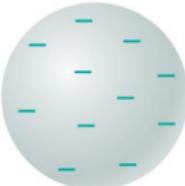
An infinitely long charged wire



An infinitely wide charged plane



A charged sphere



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

- Small objects (or far-away objects) can often be modeled as points or spheres
- Wires or planes can be often modeled as infinite, even if they aren't.
- Everything starts from a point:

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$$

Point Charges and Superposition

- So, isn't any distribution of charges just a whole bunch of:

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$$

?

Point Charges and Superposition

- So, isn't any distribution of charges just a whole bunch of:

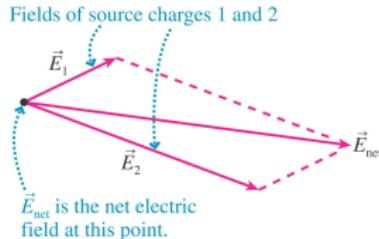
$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$$

?

- Actually, yes. As we noted earlier, the electric force obeys the **principle of superposition**

$$\vec{E}_{\text{net}} = \frac{\vec{F}_{\text{on } q}}{q} = \frac{\vec{F}_1 \text{ on } q}{q} + \frac{\vec{F}_2 \text{ on } q}{q} + \dots = \sum_i \vec{E}_i$$

The net electric field is the vector sum of the electric fields due to each charge



Limiting Cases and Typical Field Strength

- Your text emphasizes using limiting cases to get an understanding of the effects of a given charge distribution. A very common thing to do in physics!

Limiting Cases and Typical Field Strength

- Your text emphasizes using limiting cases to get an understanding of the effects of a given charge distribution. A very common thing to do in physics!
- Limiting cases often allow for a simpler treatment (eg. some terms in equations just disappear) and/or allow the physical picture to be seen more clearly.

Limiting Cases and Typical Field Strength

- Your text emphasizes using limiting cases to get an understanding of the effects of a given charge distribution. A very common thing to do in physics!
- Limiting cases often allow for a simpler treatment (eg. some terms in equations just disappear) and/or allow the physical picture to be seen more clearly.
- An example: a charge distribution should look like a point charge when viewed from a great distance. If this is not the case, you probably have the wrong description!

The Electric Field of Multiple Point Charges (27.2)

- We already noted that the electric field is a vector field, and superposition is a vector sum.

The Electric Field of Multiple Point Charges (27.2)

- We already noted that the electric field is a vector field, and superposition is a vector sum.

The Electric Field of Multiple Point Charges (27.2)

- We already noted that the electric field is a vector field, and superposition is a vector sum. So:

$$(E_{net})_x = (E_1)_x + (E_2)_x + \dots = \sum (E_i)_x$$

$$(E_{net})_y = (E_1)_y + (E_2)_y + \dots = \sum (E_i)_y$$

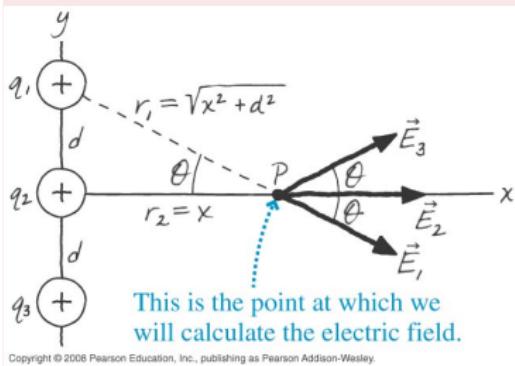
$$(E_{net})_z = (E_1)_z + (E_2)_z + \dots = \sum (E_i)_z$$

- Sometimes it is useful to write this as

$$\vec{E}_{net} = (E_{net})_x \hat{i} + (E_{net})_y \hat{j} + (E_{net})_z \hat{k}$$

Example 27.1: The Electric Field of 3 Equal Point Charges

Example 27.1

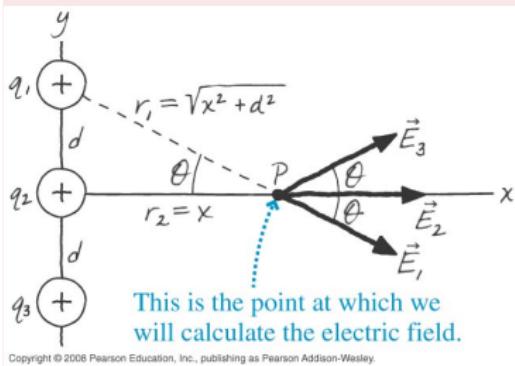


Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Three equal point charges q are located on the y -axis at $y = 0$ and $y = \pm d$. What is the electric field at a point on the x -axis?

Example 27.1: The Electric Field of 3 Equal Point Charges

Example 27.1

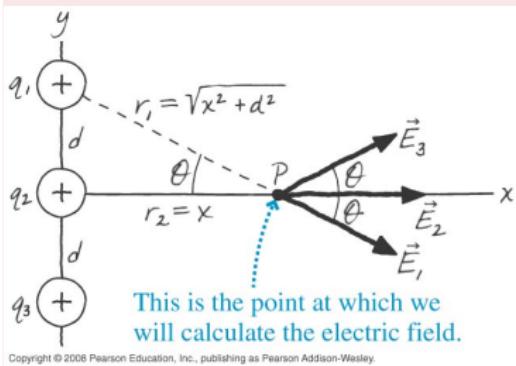


Three equal point charges q are located on the y -axis at $y = 0$ and $y = \pm d$. What is the electric field at a point on the x -axis?

- There are some clear simplifications - we do not care about the z direction at all. The y components cancel out.

Example 27.1: The Electric Field of 3 Equal Point Charges

Example 27.1

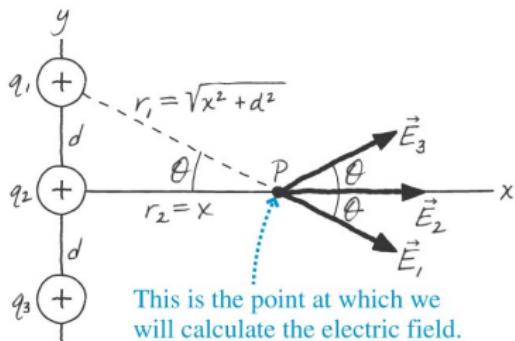


Three equal point charges q are located on the y -axis at $y = 0$ and $y = \pm d$. What is the electric field at a point on the x -axis?

- There are some clear simplifications - we do not care about the z direction at all. The y components cancel out.
- The x components add like

$$(E_{net})_x = (E_1)_x + (E_2)_x + (E_3)_x = 2(E_1)_x + (E_2)_x$$

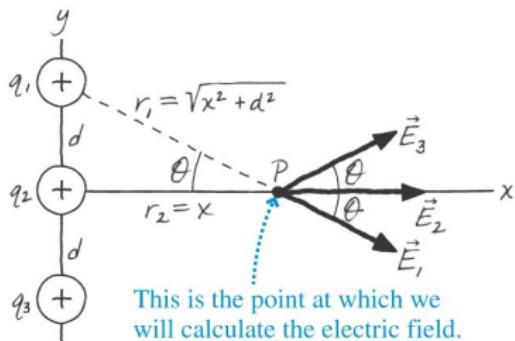
Example 27.1: The Electric Field of 3 Equal Point Charges



$$(E_2)_x = E_2 = \frac{1}{4\pi\epsilon_0} \frac{q_2}{x^2}$$

Copyright © 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

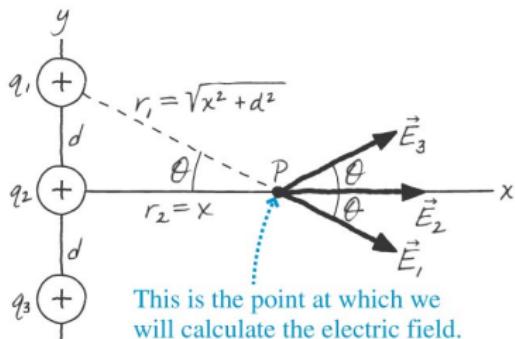
Example 27.1: The Electric Field of 3 Equal Point Charges



Copyright © 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

$$(E_2)_x = E_2 = \frac{1}{4\pi\epsilon_0} \frac{q_2}{x^2}$$
$$(E_1)_x = E_1 \cos \theta = \frac{1}{4\pi\epsilon_0} \frac{q_1}{r_1^2} \cos \theta$$

Example 27.1: The Electric Field of 3 Equal Point Charges



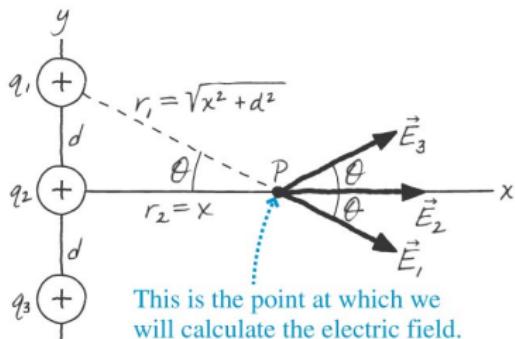
Copyright © 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

$$(E_2)_x = E_2 = \frac{1}{4\pi\epsilon_0} \frac{q_2}{x^2}$$
$$(E_1)_x = E_1 \cos \theta = \frac{1}{4\pi\epsilon_0} \frac{q_1}{r_1^2} \cos \theta$$

- But r_1 and θ vary with x . We should express E_1 in terms of x

$$\cos \theta = \frac{x}{r_1} = \frac{x}{(x^2 + d^2)^{1/2}}$$

Example 27.1: The Electric Field of 3 Equal Point Charges



This is the point at which we will calculate the electric field.

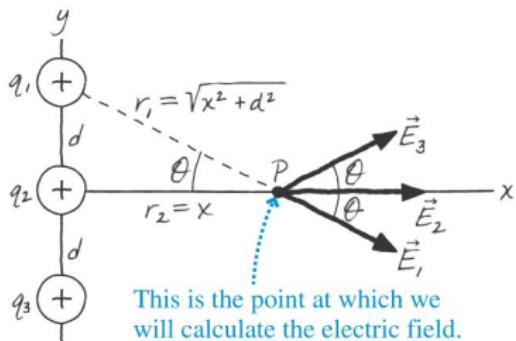
Copyright © 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

$$(E_2)_x = E_2 = \frac{1}{4\pi\epsilon_0} \frac{q_2}{x^2}$$
$$(E_1)_x = E_1 \cos \theta = \frac{1}{4\pi\epsilon_0} \frac{q_1}{r_1^2} \cos \theta$$

- But r_1 and θ vary with x . We should express E_1 in terms of x

$$\cos \theta = \frac{x}{r_1} = \frac{x}{(x^2 + d^2)^{1/2}}$$

Example 27.1: The Electric Field of 3 Equal Point Charges



This is the point at which we will calculate the electric field.

Copyright © 2006 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

$$(E_2)_x = E_2 = \frac{1}{4\pi\epsilon_0} \frac{q_2}{x^2}$$
$$(E_1)_x = E_1 \cos \theta = \frac{1}{4\pi\epsilon_0} \frac{q_1}{r_1^2} \cos \theta$$

- But r_1 and θ vary with x . We should express E_1 in terms of x

$$\cos \theta = \frac{x}{r_1} = \frac{x}{(x^2 + d^2)^{1/2}}$$

$$(E_1)_x = \frac{1}{4\pi\epsilon_0} \frac{q}{x^2 + d^2} \frac{x}{(x^2 + d^2)^{1/2}} = \frac{1}{4\pi\epsilon_0} \frac{xq}{(x^2 + d^2)^{3/2}}$$

Example 27.1: The Electric Field of 3 Equal Point Charges

Combining the expressions gives

$$(E_{net})_x = 2(E_1)_x + (E_2)_x = \frac{q}{4\pi\epsilon_0} \left[\frac{1}{x^2} + \frac{2x}{(x^2 + d^2)^{3/2}} \right]$$

Example 27.1: The Electric Field of 3 Equal Point Charges

Combining the expressions gives

$$(E_{net})_x = 2(E_1)_x + (E_2)_x = \frac{q}{4\pi\epsilon_0} \left[\frac{1}{x^2} + \frac{2x}{(x^2 + d^2)^{3/2}} \right]$$
$$\vec{E}_{net} = \frac{q}{4\pi\epsilon_0} \left[\frac{1}{x^2} + \frac{2x}{(x^2 + d^2)^{3/2}} \right] \hat{i}$$

- Notice as $x \rightarrow 0$ the second term vanishes

$$\vec{E}_{net} = \frac{1}{4\pi\epsilon_0} \frac{q}{x^2} \hat{i}$$

Example 27.1: The Electric Field of 3 Equal Point Charges

Combining the expressions gives

$$(E_{net})_x = 2(E_1)_x + (E_2)_x = \frac{q}{4\pi\epsilon_0} \left[\frac{1}{x^2} + \frac{2x}{(x^2 + d^2)^{3/2}} \right]$$
$$\vec{E}_{net} = \frac{q}{4\pi\epsilon_0} \left[\frac{1}{x^2} + \frac{2x}{(x^2 + d^2)^{3/2}} \right] \hat{i}$$

- Notice as $x \rightarrow 0$ the second term vanishes

$$\vec{E}_{net} = \frac{1}{4\pi\epsilon_0} \frac{q}{x^2} \hat{i}$$

- As x gets very large, d becomes insignificant compared to x .

$$\vec{E}_{net} = \frac{1}{4\pi\epsilon_0} \frac{(3q)}{x^2} \hat{i}$$