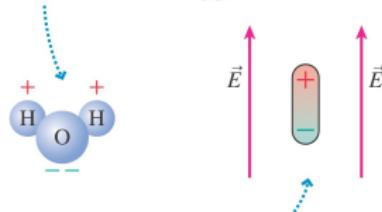


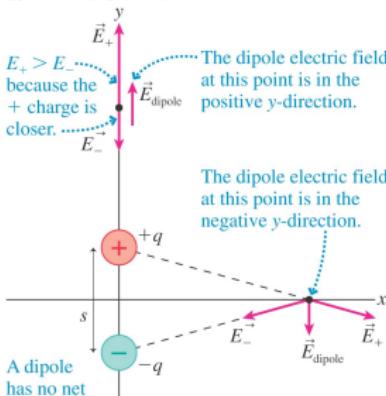
The Electric Field of a Dipole

A water molecule is a *permanent* dipole because the negative electrons spend more time with the oxygen atom.



This dipole is *induced*, or stretched, by the electric field acting on the + and - charges.

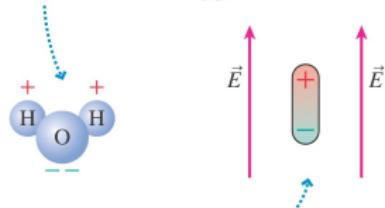
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.



- We have already seen an induced electric dipole. Natural dipoles also exist. What kind of electric field do they produce?

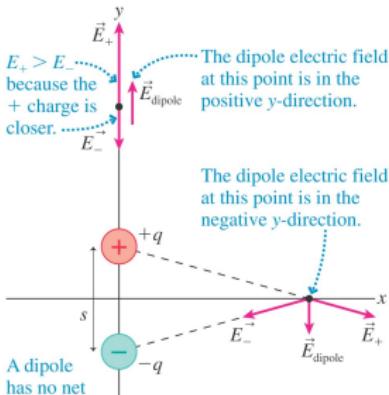
The Electric Field of a Dipole

A water molecule is a *permanent* dipole because the negative electrons spend more time with the oxygen atom.



This dipole is *induced*, or stretched, by the electric field acting on the + and - charges.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

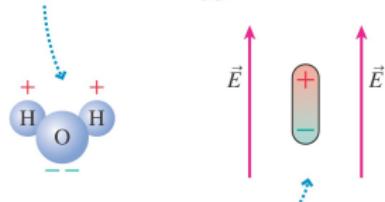


Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

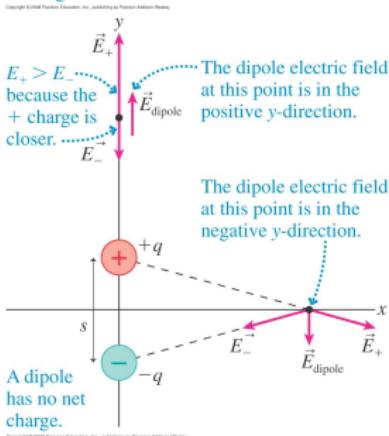
- We have already seen an induced electric dipole. Natural dipoles also exist. What kind of electric field do they produce?
- Overall the dipole is neutral.

The Electric Field of a Dipole

A water molecule is a *permanent* dipole because the negative electrons spend more time with the oxygen atom.



This dipole is *induced*, or stretched, by the electric field acting on the + and - charges.

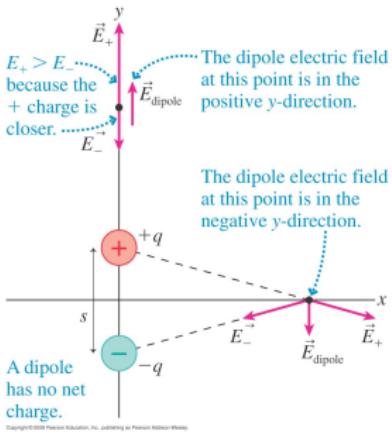


- We have already seen an induced electric dipole. Natural dipoles also exist. What kind of electric field do they produce?
- Overall the dipole is neutral.
- But, the test charge (left) is closer to the positive charge than it is to the negative. A force results.

The Electric Field of a Dipole

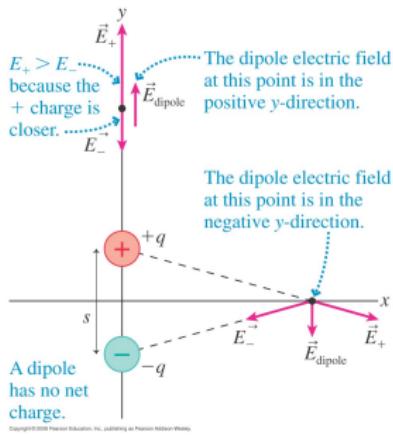
- Let's calculate the electric field at the point on the y axis with

$$r_+ = y - \frac{s}{2}$$
$$r_- = y + \frac{s}{2}$$



The Electric Field of a Dipole

- Let's calculate the electric field at the point on the y axis with



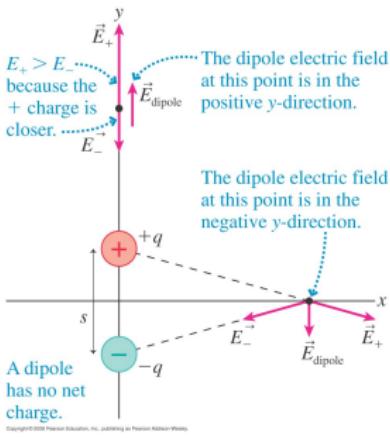
$$r_+ = y - \frac{s}{2}$$
$$r_- = y + \frac{s}{2}$$

- The sum of the fields is

$$(E_{\text{dipole}})_y = \frac{1}{4\pi\epsilon_0} \frac{q}{(y - \frac{1}{2}s)^2} + \frac{1}{4\pi\epsilon_0} \frac{(-q)}{(y + \frac{1}{2}s)^2}$$

The Electric Field of a Dipole

- Let's calculate the electric field at the point on the y axis with



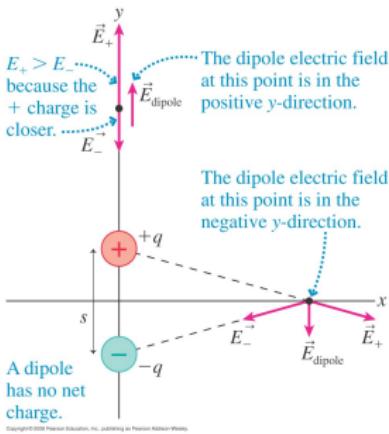
$$r_+ = y - \frac{s}{2}$$
$$r_- = y + \frac{s}{2}$$

- The sum of the fields is

$$(E_{\text{dipole}})_y = \frac{1}{4\pi\epsilon_0} \frac{q}{(y - \frac{1}{2}s)^2} + \frac{1}{4\pi\epsilon_0} \frac{(-q)}{(y + \frac{1}{2}s)^2}$$

The Electric Field of a Dipole

- Let's calculate the electric field at the point on the y axis with



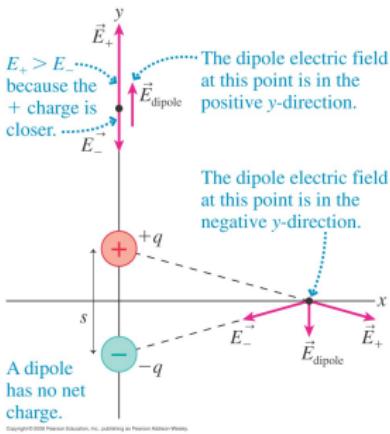
$$r_+ = y - \frac{s}{2}$$
$$r_- = y + \frac{s}{2}$$

- The sum of the fields is

$$(E_{\text{dipole}})_y = \frac{1}{4\pi\epsilon_0} \frac{q}{(y - \frac{1}{2}s)^2} + \frac{1}{4\pi\epsilon_0} \frac{(-q)}{(y + \frac{1}{2}s)^2}$$
$$= \frac{q}{4\pi\epsilon_0} \left[\frac{1}{(y - \frac{1}{2}s)^2} - \frac{1}{(y + \frac{1}{2}s)^2} \right]$$

The Electric Field of a Dipole

- Let's calculate the electric field at the point on the y axis with



$$r_+ = y - \frac{s}{2}$$
$$r_- = y + \frac{s}{2}$$

- The sum of the fields is

$$\begin{aligned}(E_{\text{dipole}})_y &= \frac{1}{4\pi\epsilon_0} \frac{q}{(y - \frac{1}{2}s)^2} + \frac{1}{4\pi\epsilon_0} \frac{(-q)}{(y + \frac{1}{2}s)^2} \\ &= \frac{q}{4\pi\epsilon_0} \left[\frac{1}{(y - \frac{1}{2}s)^2} - \frac{1}{(y + \frac{1}{2}s)^2} \right] \\ &= \frac{q}{4\pi\epsilon_0} \left[\frac{2ys}{(y - \frac{1}{2}s)^2(y + \frac{1}{2}s)^2} \right]\end{aligned}$$

The Electric Field of a Dipole

$$(E_{\text{dipole}})_y = \frac{q}{4\pi\epsilon_0} \left[\frac{2ys}{(y - \frac{1}{2}s)^2(y + \frac{1}{2}s)^2} \right]$$

- For distances much larger than the charge separation ($y \gg s$) the $y - \frac{1}{2}s$ is just y and

$$(E_{\text{dipole}})_y = \frac{1}{4\pi\epsilon_0} \frac{2qs}{y^3}$$

The Electric Field of a Dipole

$$(E_{\text{dipole}})_y = \frac{q}{4\pi\epsilon_0} \left[\frac{2ys}{(y - \frac{1}{2}s)^2(y + \frac{1}{2}s)^2} \right]$$

- For distances much larger than the charge separation ($y \gg s$) the $y - \frac{1}{2}s$ is just y and

$$(E_{\text{dipole}})_y = \frac{1}{4\pi\epsilon_0} \frac{2qs}{y^3}$$

- We define the **dipole moment** as $\vec{p} = qs$ (direction negative to positive) $\vec{p} = qs\hat{j}$ in this case, so that

$$\vec{E}_{\text{dipole}} = \frac{1}{4\pi\epsilon_0} \frac{2\vec{p}}{r^3}, \text{ (on axis of dipole)}$$

The Electric Field of a Dipole

$$(E_{\text{dipole}})_y = \frac{q}{4\pi\epsilon_0} \left[\frac{2ys}{(y - \frac{1}{2}s)^2(y + \frac{1}{2}s)^2} \right]$$

- For distances much larger than the charge separation ($y \gg s$) the $y - \frac{1}{2}s$ is just y and

$$(E_{\text{dipole}})_y = \frac{1}{4\pi\epsilon_0} \frac{2qs}{y^3}$$

- We define the **dipole moment** as $\vec{p} = qs$ (direction negative to positive) $\vec{p} = qs\hat{j}$ in this case, so that

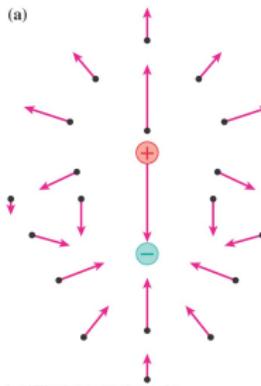
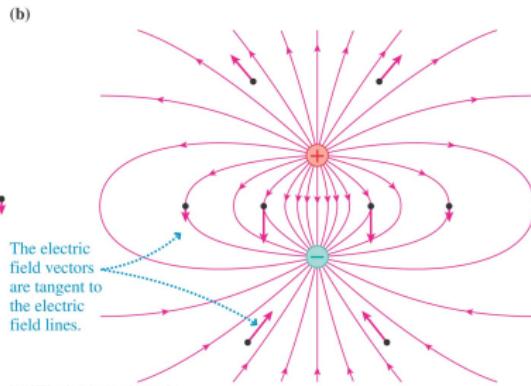
$$\vec{E}_{\text{dipole}} = \frac{1}{4\pi\epsilon_0} \frac{2\vec{p}}{r^3}, \text{ (on axis of dipole)}$$

- In the perpendicular plane that bisects the dipole we can also show

$$\vec{E}_{\text{dipole}} = \frac{1}{4\pi\epsilon_0} \frac{(-\vec{p})}{r^3}, \text{ (perpendicular to dipole)}$$

Picturing the Electric Field

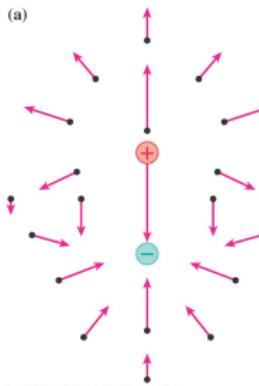
We have a couple of different ways to represent an electric field:



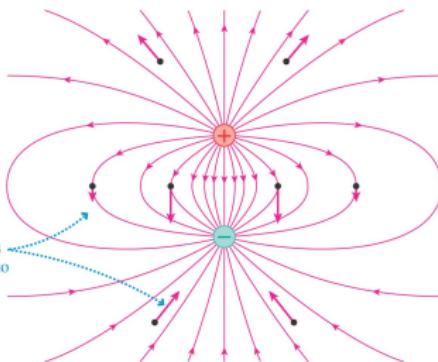
- Electric field lines are continuous curves tangent to electric field vectors

Picturing the Electric Field

We have a couple of different ways to represent an electric field:



(b)

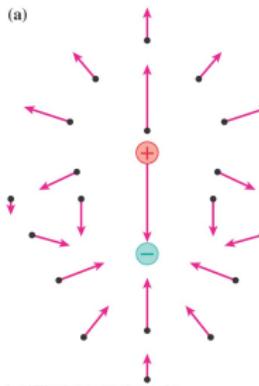


The electric
field vectors
are tangent to
the electric field
lines.

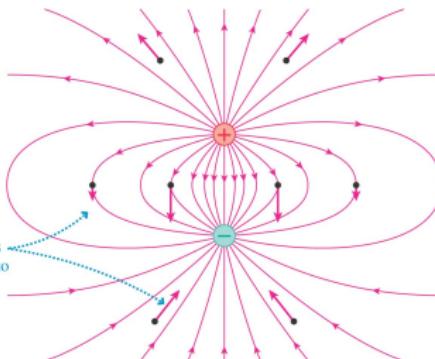
- Electric field lines are continuous curves tangent to electric field vectors
- Closely spaced field lines represent larger field strength

Picturing the Electric Field

We have a couple of different ways to represent an electric field:



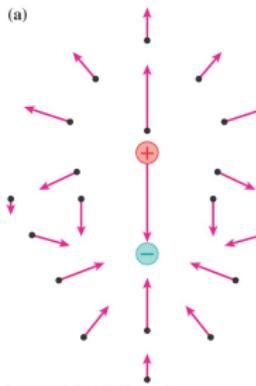
(b)



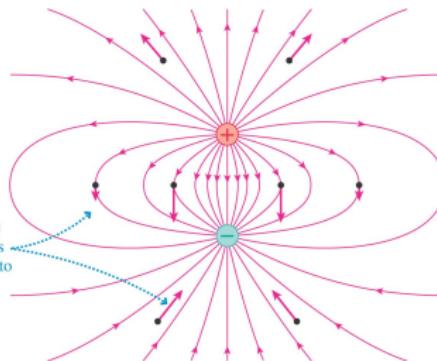
- Electric field lines are continuous curves tangent to electric field vectors
- Closely spaced field lines represent larger field strength
- Electric field lines never cross

Picturing the Electric Field

We have a couple of different ways to represent an electric field:



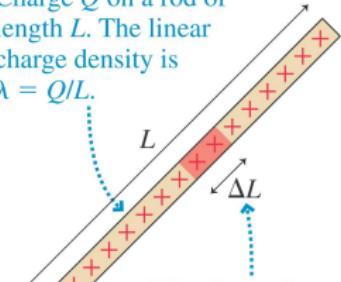
(b)



- Electric field lines are continuous curves tangent to electric field vectors
- Closely spaced field lines represent larger field strength
- Electric field lines never cross
- Electric field lines start on positive charges and end on negative charges.

The Electric Field of a Continuous Charge Distribution (27.3)

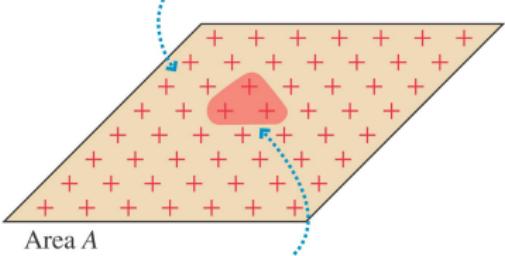
(a) Charge Q on a rod of length L . The linear charge density is $\lambda = Q/L$.



The diagram shows a long, thin, straight rod oriented diagonally. The rod is covered with red '+' signs representing charge. A small segment of the rod is highlighted in pink, with a length labeled ΔL and a charge label ΔQ . The total length of the rod is labeled L . A dotted line extends from the rod to the right, indicating its continuation.

The charge in a small length ΔL is $\Delta Q = \lambda \Delta L$.

(b) Charge Q on a surface of area A . The surface charge density is $\eta = Q/A$.



The diagram shows a flat, triangular surface representing a plane. The surface is covered with red '+' signs. A small triangular area on the surface is highlighted in pink, with a surface area labeled ΔA and a charge label ΔQ . The total area of the surface is labeled A . A dotted line extends from the surface to the right, indicating its continuation.

The charge in a small area ΔA is $\Delta Q = \eta \Delta A$.

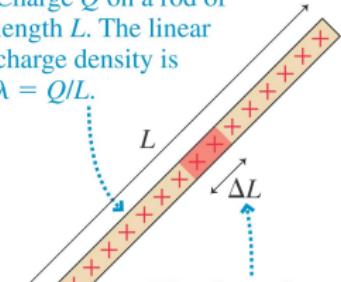
- For a continuous object we cannot look at every single charge individually. Instead define **linear charge density** and **surface charge density**

$$\lambda = \frac{Q}{L}, \quad \eta = \frac{Q}{A}$$

Where Q is the total charge on an object, not a single-particle charge.

The Electric Field of a Continuous Charge Distribution (27.3)

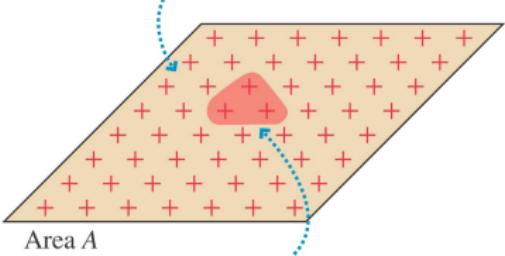
(a) Charge Q on a rod of length L . The linear charge density is $\lambda = Q/L$.



The diagram shows a long, thin, slightly curved rod with a uniform distribution of positive charges represented by red '+' symbols. The rod is oriented diagonally. A small segment of length ΔL is highlighted with a pink shaded area. The total length of the rod is labeled L . A dotted line with arrows indicates the direction of the rod's length.

The charge in a small length ΔL is $\Delta Q = \lambda \Delta L$.

(b) Charge Q on a surface of area A . The surface charge density is $\eta = Q/A$.



The diagram shows a flat, triangular-shaped surface representing a plane. The surface is covered with a uniform distribution of positive charges, shown as red '+' symbols. A small, circular region of area ΔA is highlighted with a pink shaded area. The total area of the surface is labeled A . A dotted line with arrows indicates the direction of the surface's normal.

The charge in a small area ΔA is $\Delta Q = \eta \Delta A$.

- For a continuous object we cannot look at every single charge individually. Instead define **linear charge density** and **surface charge density**

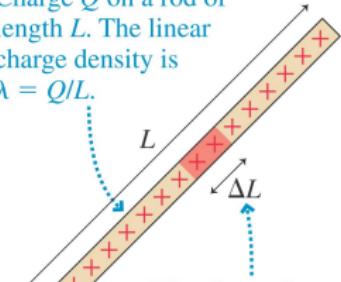
$$\lambda = \frac{Q}{L}, \quad \eta = \frac{Q}{A}$$

Where Q is the total charge on an object, not a single-particle charge.

- These definitions assume that the object is uniformly charged.

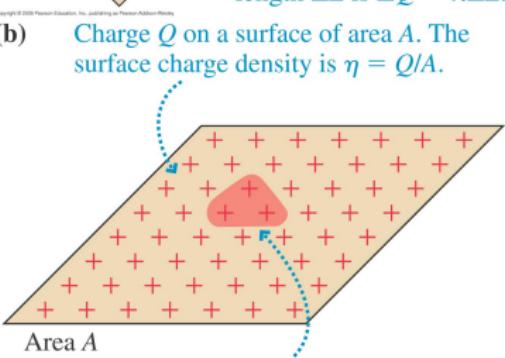
The Electric Field of a Continuous Charge Distribution (27.3)

(a) Charge Q on a rod of length L . The linear charge density is $\lambda = Q/L$.



The diagram shows a long, thin, slightly curved rod with a uniform distribution of positive charges represented by red '+' symbols. The rod is oriented diagonally. A small segment of length ΔL is highlighted with a pink shaded area. The text 'The charge in a small length ΔL is $\Delta Q = \lambda \Delta L$ ' is written below the rod.

(b) Charge Q on a surface of area A . The surface charge density is $\eta = Q/A$.



The diagram shows a flat, triangular-shaped surface with a uniform distribution of positive charges represented by red '+' symbols. A small area element ΔA is highlighted with a pink shaded region. The text 'The charge in a small area ΔA is $\Delta Q = \eta \Delta A$ ' is written below the surface.

- For a continuous object we cannot look at every single charge individually. Instead define **linear charge density** and **surface charge density**

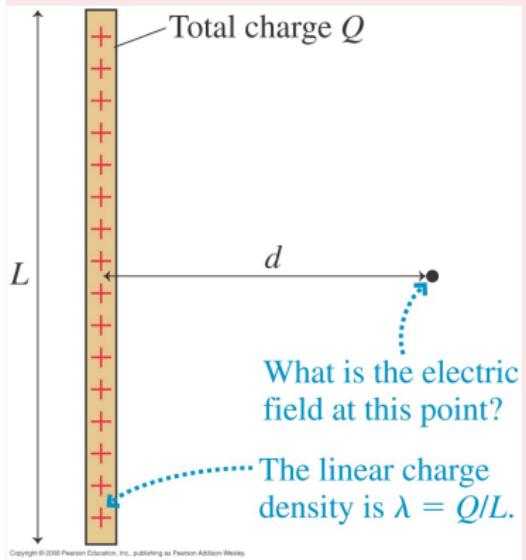
$$\lambda = \frac{Q}{L}, \quad \eta = \frac{Q}{A}$$

Where Q is the total charge on an object, not a single-particle charge.

- These definitions assume that the object is uniformly charged.
- We have some tricks to break the distributions into pieces, then build it back up again.

Example 27.3 - The Electric Field of a Line of Charge

Example 27.3

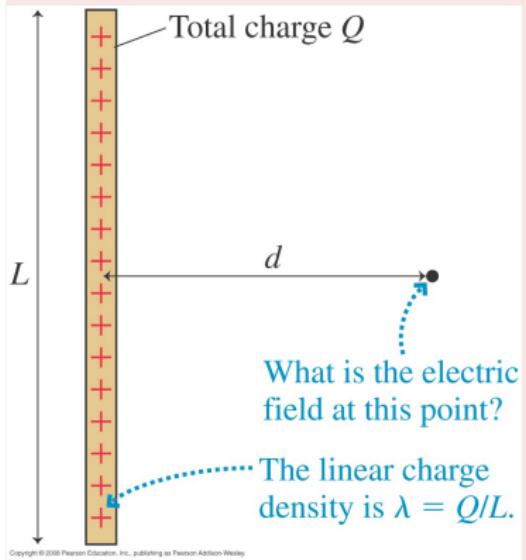


Find the electric field strength at a distance d in the plane that bisects a rod of length L and total charge q .

- The rod is thin, so assume the charge lies along a line

Example 27.3 - The Electric Field of a Line of Charge

Example 27.3



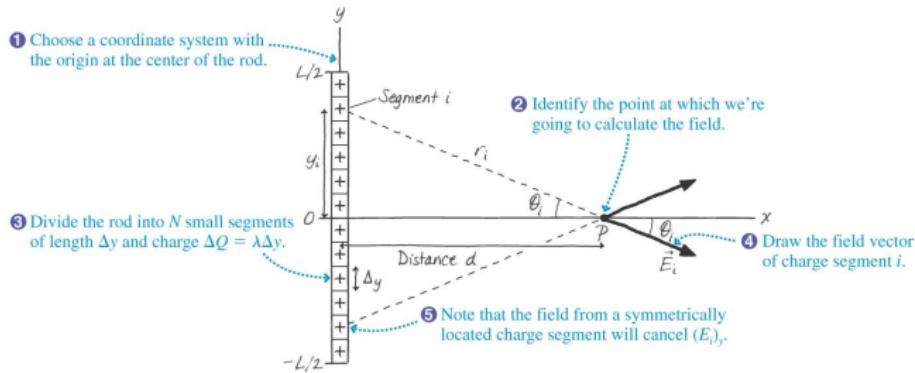
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Find the electric field strength at a distance d in the plane that bisects a rod of length L and total charge q .

- The rod is thin, so assume the charge lies along a line
- The charge density of the line is

$$\lambda = \frac{Q}{L}$$

Example 27.3

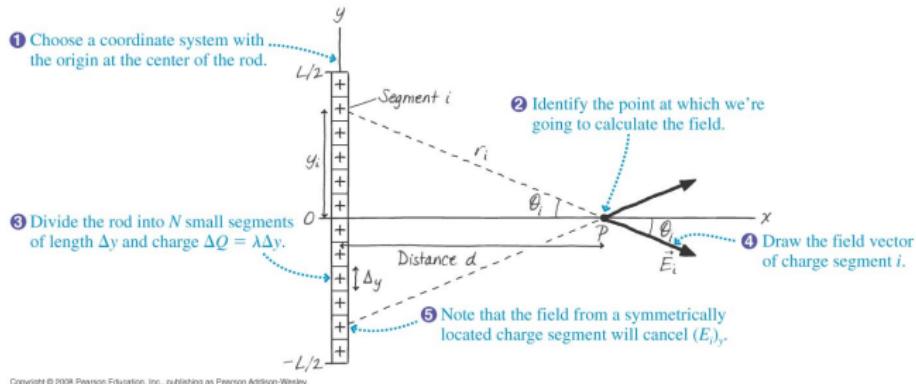


Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

- Model each little segment of charge (i) as a point charge

$$(E_i)_x = E_i \cos \theta_i = \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{r_i^2} \cos \theta_i$$

Example 27.3



- Model each little segment of charge (i) as a point charge

$$(E_i)_x = E_i \cos \theta_i = \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{r_i^2} \cos \theta_i$$

- We can express r_i^2 and $\cos \theta_i$ as

$$r_i = (y_i^2 + d^2)^{1/2}, \quad \cos \theta_i = \frac{d}{r} = \frac{d}{(y_i^2 + d^2)^{1/2}}$$

Example 27.3

- Plugging these into the electric field formula gives

$$(E_i)_x = \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{y_i^2 + d^2} \frac{d}{\sqrt{y_i^2 + d^2}}$$

Example 27.3

- Plugging these into the electric field formula gives

$$(E_i)_x = \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{y_i^2 + d^2} \frac{d}{\sqrt{y_i^2 + d^2}}$$

Example 27.3

- Plugging these into the electric field formula gives

$$\begin{aligned}(E_i)_x &= \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{y_i^2 + d^2} \frac{d}{\sqrt{y_i^2 + d^2}} \\ &= \frac{1}{4\pi\epsilon_0} \frac{d\Delta Q}{(y_i^2 + d^2)^{3/2}}\end{aligned}$$

- Now we can sum over all of the little segments

$$E_x = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^N \frac{d\Delta Q}{(y_i^2 + d^2)^{3/2}}$$

Example 27.3

- Plugging these into the electric field formula gives

$$\begin{aligned}(E_i)_x &= \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{y_i^2 + d^2} \frac{d}{\sqrt{y_i^2 + d^2}} \\ &= \frac{1}{4\pi\epsilon_0} \frac{d\Delta Q}{(y_i^2 + d^2)^{3/2}}\end{aligned}$$

- Now we can sum over all of the little segments

$$E_x = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^N \frac{d\Delta Q}{(y_i^2 + d^2)^{3/2}}$$

- Of course, the rod is not really in little segments. We should make those infinitely small and integrate.

Example 27.3

- The problem with trying to integrate this:

$$E_x = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^N \frac{d\Delta Q}{(y_i^2 + d^2)^{3/2}}$$

is that we don't know how to integrate over Q .

Example 27.3

- The problem with trying to integrate this:

$$E_x = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^N \frac{d\Delta Q}{(y_i^2 + d^2)^{3/2}}$$

is that we don't know how to integrate over Q .

- We need to change the variable using the charge density.

$$\Delta Q = \lambda \Delta y = \frac{Q}{L} \Delta y$$

Example 27.3

- The problem with trying to integrate this:

$$E_x = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^N \frac{d\Delta Q}{(y_i^2 + d^2)^{3/2}}$$

is that we don't know how to integrate over Q .

- We need to change the variable using the charge density.

$$\Delta Q = \lambda \Delta y = \frac{Q}{L} \Delta y$$

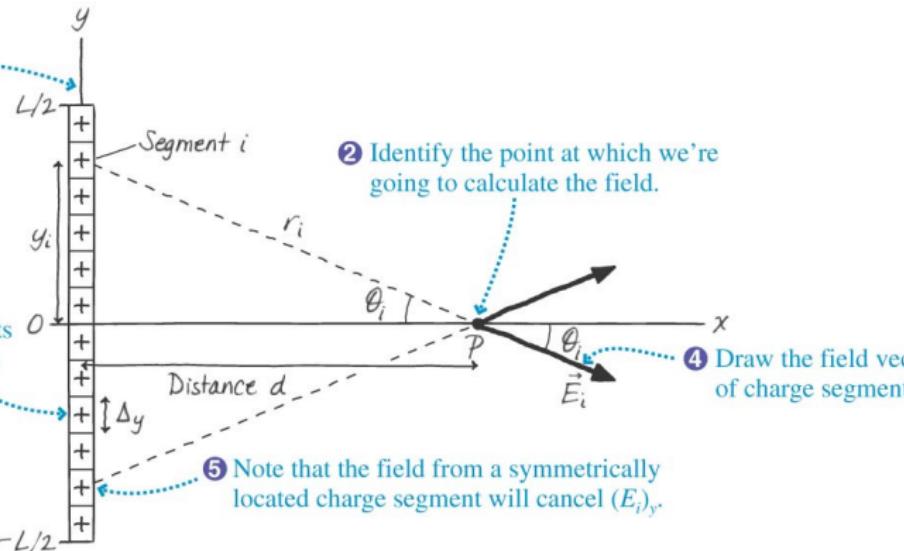
- Giving:

$$E_x = \frac{Q/L}{4\pi\epsilon_0} \sum_{i=1}^N \frac{d\Delta y}{(y_i^2 + d^2)^{3/2}}$$

Example 27.3

① Choose a coordinate system with the origin at the center of the rod.

③ Divide the rod into N small segments of length Δy and charge $\Delta Q = \lambda \Delta y$.



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

$$E_x = \frac{Q/L}{4\pi\epsilon_0} \int_{-L/2}^{L/2} \frac{d}{(y_i^2 + d^2)^{3/2}} dy$$

Example 27.3

- We can actually do that integral:

$$E_x = \frac{Q/L}{4\pi\epsilon_0 d} \frac{y}{\sqrt{y_i^2 + d^2}} \Big|_{-L/2}^{L/2}$$

Example 27.3

- We can actually do that integral:

$$E_x = \frac{Q/L}{4\pi\epsilon_0 d} \frac{y}{\sqrt{y_i^2 + d^2}} \Big|_{-L/2}^{L/2}$$

Example 27.3

- We can actually do that integral:

$$\begin{aligned} E_x &= \frac{Q/L}{4\pi\epsilon_0} \frac{y}{d\sqrt{y_i^2 + d^2}} \Big|_{-L/2}^{L/2} \\ &= \frac{Q/L}{4\pi\epsilon_0} \left[\frac{L/2}{d\sqrt{(L/2)^2 + d^2}} - \frac{-L/2}{d\sqrt{(-L/2)^2 + d^2}} \right] \end{aligned}$$

Example 27.3

- We can actually do that integral:

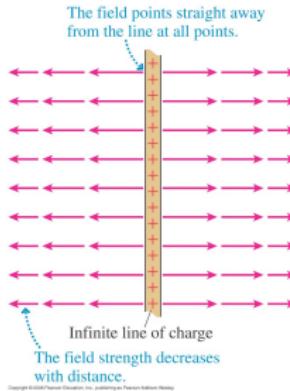
$$\begin{aligned} E_x &= \frac{Q/L}{4\pi\epsilon_0} \frac{y}{d\sqrt{y_i^2 + d^2}} \Big|_{-L/2}^{L/2} \\ &= \frac{Q/L}{4\pi\epsilon_0} \left[\frac{L/2}{d\sqrt{(L/2)^2 + d^2}} - \frac{-L/2}{d\sqrt{(-L/2)^2 + d^2}} \right] \\ &= \frac{1}{4\pi\epsilon_0} \frac{Q}{d\sqrt{d^2 + (L/2)^2}} \end{aligned}$$

- We should check this at the far-away limit, $d \gg L$

$$E_x = \frac{1}{4\pi\epsilon_0} \frac{Q}{d^2}$$

Back to a point charge!!

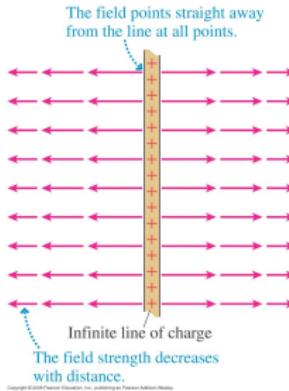
An Infinite Line of Charge



- Let's consider an infinitely long wire of the same charge density λ . We can use the formula for the wire in the extreme limit

$$E_{line} = \lim_{L \rightarrow \infty} \frac{1}{4\pi\epsilon_0} \frac{|Q|}{r \sqrt{r^2 + (L/2)^2}} = \frac{1}{4\pi\epsilon_0} \frac{|Q|}{rL/2} = \frac{1}{4\pi\epsilon_0} \frac{2|\lambda|}{r}$$

An Infinite Line of Charge



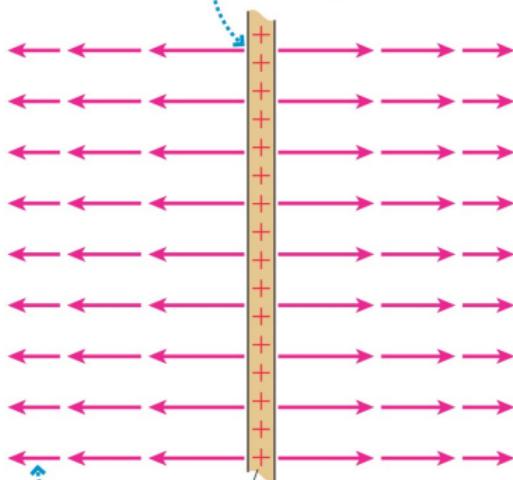
- Let's consider an infinitely long wire of the same charge density λ . We can use the formula for the wire in the extreme limit

$$E_{line} = \lim_{L \rightarrow \infty} \frac{1}{4\pi\epsilon_0} \frac{|Q|}{r \sqrt{r^2 + (L/2)^2}} = \frac{1}{4\pi\epsilon_0} \frac{|Q|}{rL/2} = \frac{1}{4\pi\epsilon_0} \frac{2|\lambda|}{r}$$

- Notice that the field goes like $1/r$ instead of $1/r^2$

An Infinite Line of Charge

The field points straight away from the line at all points.

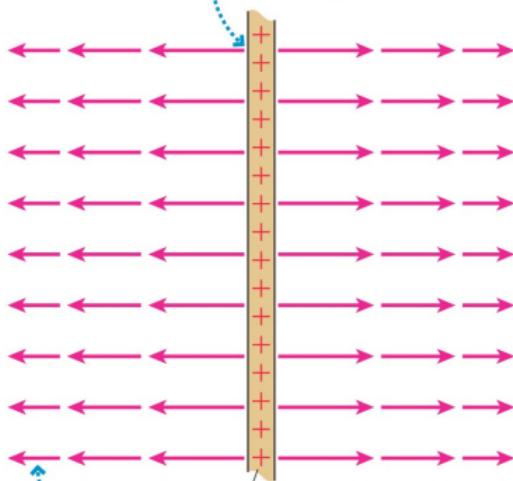


The field strength decreases with distance.

- Of course, no line of charge is really infinite.

An Infinite Line of Charge

The field points straight away from the line at all points.

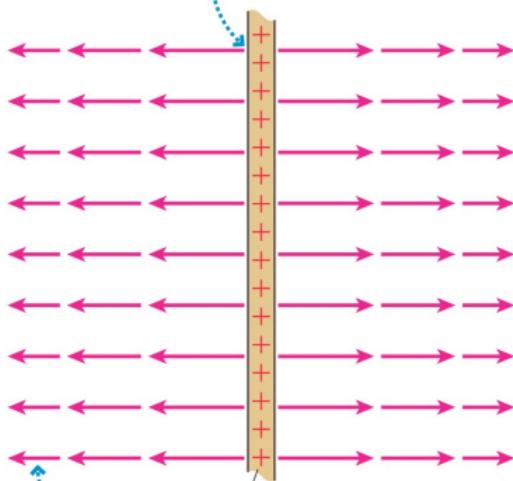


Infinite line of charge
The field strength decreases with distance.

- Of course, no line of charge is really infinite.
- The contributions from charges far down the wire are very small (like $1/r^2$), so a long wire exerts roughly the same force as an infinite one.

An Infinite Line of Charge

The field points straight away from the line at all points.

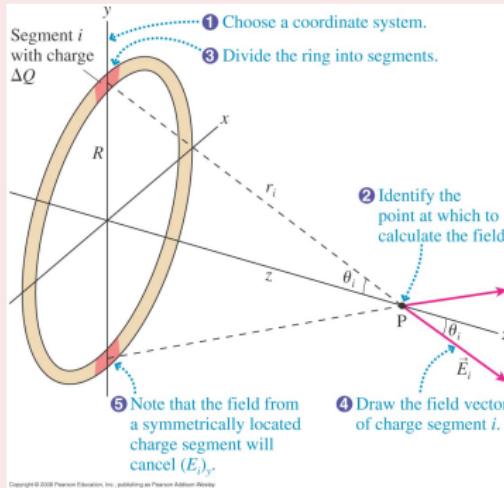


The field strength decreases with distance.

- Of course, no line of charge is really infinite.
- The contributions from charges far down the wire are very small ($1/r^2$), so a long wire exerts roughly the same force as an infinite one.
- There are problems with this close to the ends of the finite wire.

Rings, Disks, Planes and Spheres (27.4)

Example 27.5

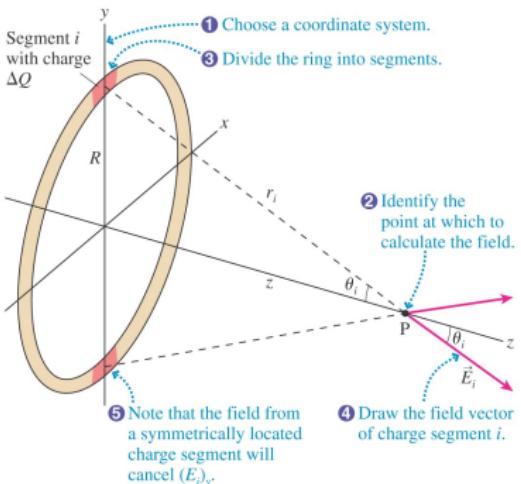


A thin ring of radius R is uniformly charged with total charge Q . Find the electric field at a point on the axis of the ring.

Electric Field from A Thin Ring

- The linear charge density along the ring is

$$\lambda = \frac{Q}{2\pi R}$$



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison Wesley

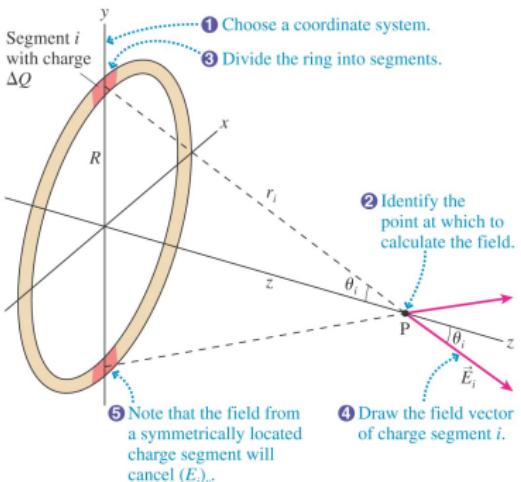
Electric Field from A Thin Ring

- The linear charge density along the ring is

$$\lambda = \frac{Q}{2\pi R}$$

- Divide the ring into N small segments and the z component of the i th segment is

$$(E_i)_z = E_i \cos \theta_i = \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{r_i^2} \cos \theta_i$$



Electric Field from A Thin Ring

- The linear charge density along the ring is

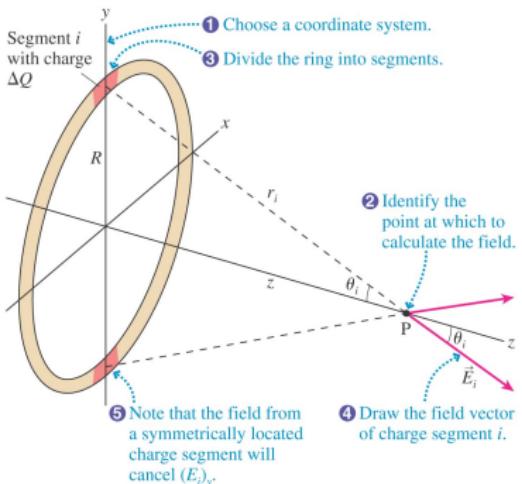
$$\lambda = \frac{Q}{2\pi R}$$

- Divide the ring into N small segments and the z component of the i th segment is

$$(E_i)_z = E_i \cos \theta_i = \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{r_i^2} \cos \theta_i$$

- Every point on the ring is equidistant from the axis!

$$r_i = \sqrt{z^2 + R^2}$$



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison Wesley

Electric Field from A Thin Ring

- The linear charge density along the ring is

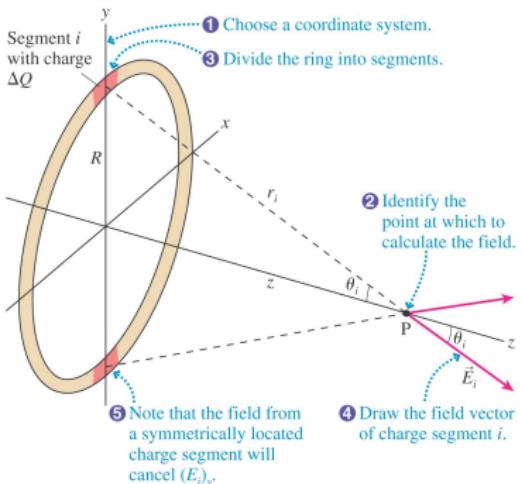
$$\lambda = \frac{Q}{2\pi R}$$

- Divide the ring into N small segments and the z component of the i th segment is

$$(E_i)_z = E_i \cos \theta_i = \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{r_i^2} \cos \theta_i$$

- Every point on the ring is equidistant from the axis!

$$r_i = \sqrt{z^2 + R^2}$$



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison Wesley

Electric Field from A Thin Ring

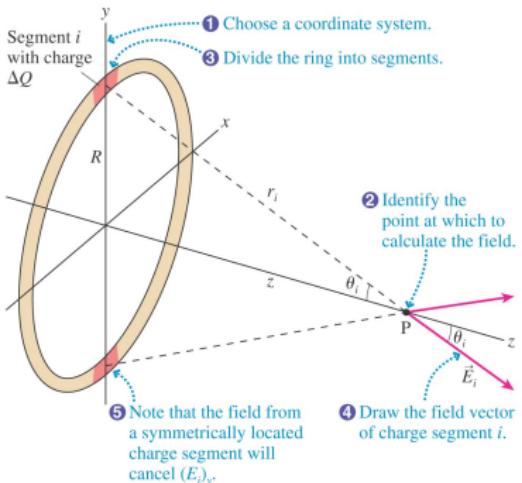
- The linear charge density along the ring is

$$\lambda = \frac{Q}{2\pi R}$$

- Divide the ring into N small segments and the z component of the i th segment is

$$(E_i)_z = E_i \cos \theta_i = \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{r_i^2} \cos \theta_i$$

- Every point on the ring is equidistant from the axis!



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison Wesley

$$r_i = \sqrt{z^2 + R^2}$$
$$\cos \theta_i = \frac{z}{r_i} = \frac{z}{\sqrt{z^2 + R^2}}$$

Electric Field from A Thin Ring

- Substituting we have:

$$(E_i)_z = \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{r_i^2} \cos \theta_i$$

Electric Field from A Thin Ring

- Substituting we have:

$$(E_i)_z = \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{r_i^2} \cos \theta_i$$

Electric Field from A Thin Ring

- Substituting we have:

$$(E_i)_z = \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{r_i^2} \cos \theta_i$$

$$(E_i)_z = \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{z^2 + R^2} \frac{z}{\sqrt{z^2 + R^2}}$$

Electric Field from A Thin Ring

- Substituting we have:

$$\begin{aligned}(E_i)_z &= \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{r_i^2} \cos \theta_i \\ (E_i)_z &= \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{z^2 + R^2} \frac{z}{\sqrt{z^2 + R^2}} \\ &= \frac{1}{4\pi\epsilon_0} \frac{z}{(z^2 + R^2)^{3/2}} \Delta Q\end{aligned}$$

- This needs to be summed over all segments:

$$E_z = \frac{1}{4\pi\epsilon_0} \frac{z}{(z^2 + R^2)^{3/2}} \sum_{i=1}^N \Delta Q$$

Electric Field from A Thin Ring

- Substituting we have:

$$(E_i)_z = \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{r_i^2} \cos \theta_i$$

$$\begin{aligned}(E_i)_z &= \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{z^2 + R^2} \frac{z}{\sqrt{z^2 + R^2}} \\ &= \frac{1}{4\pi\epsilon_0} \frac{z}{(z^2 + R^2)^{3/2}} \Delta Q\end{aligned}$$

- This needs to be summed over all segments:

$$E_z = \frac{1}{4\pi\epsilon_0} \frac{z}{(z^2 + R^2)^{3/2}} \sum_{i=1}^N \Delta Q$$

- Note that all points on the ring are the same distance from the axis. Who needs an integral??

$$E_z = \frac{1}{4\pi\epsilon_0} \frac{zQ}{(z^2 + R^2)^{3/2}}$$