
The Electric Field of a Dipole

We have already seen an induced electric
dipole. Natural dipoles also exist. What kind
of electric field do they produce?

Overall the dipole is neutral.
But, the test charge (left) is closer to the
positive charge than it is to the negative. A
force results.
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The Electric Field of a Dipole

Let’s calculate the electric field at the point
on the y axis with

r+ = y −
s
2

r− = y +
s
2

The sum of the fields is

(Edipole)y =
1

4πε0

q
(y − 1

2s)2
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1
4πε0

(−q)

(y + 1
2s)2

=
q
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2s)2
−

1
(y + 1

2s)2


=

q
4πε0

 2ys
(y − 1

2s)2(y + 1
2s)2


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The Electric Field of a Dipole

(Edipole)y =
q

4πε0

 2ys
(y − 1

2s)2(y + 1
2s)2


For distances much larger than the charge separation (y � s) the
y − 1

2s is just y and

(Edipole)y =
1

4πε0

2qs
y3

We define the dipole moment as ~p = qs (direction negative to
positive) ~p = qs ̂ in this case, so that

~Edipole =
1

4πε0

2~p
r3 , (on axis of dipole)

In the perpendicular plane that bisects the dipole we can also
show

~Edipole =
1

4πε0

(−~p)

r3 , (perpendicular to dipole)

Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 3 / 16



The Electric Field of a Dipole

(Edipole)y =
q

4πε0

 2ys
(y − 1

2s)2(y + 1
2s)2


For distances much larger than the charge separation (y � s) the
y − 1

2s is just y and

(Edipole)y =
1

4πε0

2qs
y3

We define the dipole moment as ~p = qs (direction negative to
positive) ~p = qs ̂ in this case, so that

~Edipole =
1

4πε0

2~p
r3 , (on axis of dipole)

In the perpendicular plane that bisects the dipole we can also
show

~Edipole =
1

4πε0

(−~p)

r3 , (perpendicular to dipole)

Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 3 / 16



The Electric Field of a Dipole

(Edipole)y =
q

4πε0

 2ys
(y − 1

2s)2(y + 1
2s)2


For distances much larger than the charge separation (y � s) the
y − 1

2s is just y and

(Edipole)y =
1

4πε0

2qs
y3

We define the dipole moment as ~p = qs (direction negative to
positive) ~p = qs ̂ in this case, so that

~Edipole =
1

4πε0

2~p
r3 , (on axis of dipole)

In the perpendicular plane that bisects the dipole we can also
show

~Edipole =
1

4πε0

(−~p)

r3 , (perpendicular to dipole)

Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 3 / 16



Picturing the Electric Field

We have a couple of different ways to represent an electric field:

Electric field lines are continuous curves tangent to electric field
vectors

Closely spaced field lines represent larger field strength
Electric field lines never cross
Electric field lines start on positive charges and end on negative
charges.
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The Electric Field of a Continuous Charge Distribution
(27.3)

For a continuous object we cannot
look at every single charge
individually. Instead define linear
charge density and surface charge
density

λ =
Q
L
, η =

Q
A

Where Q is the total charge on an
object, not a single-particle charge.

These definitions assume that the
object is uniformly charged.
We have some tricks to break the
distributions into pieces, then build it
back up again.
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Example 27.3 - The Electric Field of a Line of Charge

Example 27.3

Find the electric field strength at a
distance d in the plane that bisects a rod
of length L and total charge q.

The rod is thin, so assume the charge
lies along a line

The charge density of the line is

λ =
Q
L
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Example 27.3

Model each little segment of charge (i) as a point charge

(Ei)x = Ei cosθi =
1

4πε0

∆Q
r2
i

cosθi

We can express r2
i and cosθi as

ri = (y2
i + d2)1/2, cosθi =

d
r

=
d

(y2
i + d2)1/2
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Example 27.3

Plugging these into the electric field formula gives

(Ei)x =
1

4πε0

∆Q
y2

i + d2

d√
y2

i + d2

=
1

4πε0

d∆Q
(y2

i + d2)3/2

Now we can sum over all of the little segments

Ex =
1

4πε0

N∑
i=1

d∆Q
(y2

i + d2)3/2

Of course, the rod is not really in little segments. We should make
those infinitely small and integrate.
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Example 27.3

The problem with trying to integrate this:

Ex =
1

4πε0

N∑
i=1

d∆Q
(y2

i + d2)3/2

is that we don’t know how to integrate over Q .

We need to change the variable using the charge density.

∆Q = λ∆y =
Q
L

∆y

Giving:

Ex =
Q/L
4πε0

N∑
i=1

d∆y
(y2

i + d2)3/2
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Example 27.3

Ex =
Q/L
4πε0

∫ L/2

−L/2

d
(y2

i + d2)3/2
dy
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Example 27.3

We can actually do that integral:

Ex =
Q/L
4πε0

y

d
√

y2
i + d2

∣∣∣∣∣∣∣∣∣
L/2

−L/2

=
Q/L
4πε0

 L/2

d
√

(L/2)2 + d2
−

−L/2

d
√

(−L/2) + d2


=

1
4πε0

Q

d
√

d2 + (L/2)2

We should check this at the far-away limit, d � L

Ex =
1

4πε0

Q
d2

Back to a point charge!!
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An Infinite Line of Charge

Let’s consider an infinitely long wire of the same charge density λ.
We can use the formula for the wire in the extreme limit

Eline = lim
L→∞

1
4πε0

|Q |

r
√

r2 + (L/2)2
=

1
4πε0

|Q |
rL/2

=
1

4πε0

2|λ|
r

Notice that the field goes like 1/r instead of 1/r2
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An Infinite Line of Charge

Of course, no line of charge is really
infinite.

The contributions from charges far
down the wire are very small
(like1/r2), so a long wire exerts
roughly the same force as an infinite
one.
There are problems with this close to
the ends of the finite wire.
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Rings, Disks, Planes and Spheres (27.4)

Example 27.5

A thin ring of radius R is uniformly charged with total charge Q . Find
the electric field at a point on the axis of the ring.
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Electric Field from A Thin Ring

The linear charge density along the
ring is

λ =
Q

2πR

Divide the ring into N small segments
and the z component of the ith
segment is

(Ei)z = Ei cosθi =
1

4πε0

∆Q
r2
i

cosθi

Every point on the ring is equidistant
from the axis!

ri =
√

z2 + R2

cosθi =
z
ri

=
z

√
z2 + R2
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Electric Field from A Thin Ring

Substituting we have:

(Ei)z =
1

4πε0

∆Q
r2
i

cosθi

(Ei)z =
1

4πε0

∆Q
z2 + R2

z
√

z2 + R2

=
1

4πε0

z
(z2 + R2)3/2 ∆Q

This needs to be summed over all segments:

Ez =
1

4πε0

z
(z2 + R2)3/2

N∑
i=1

∆Q

Note that all points on the ring are the same distance from the
axis. Who needs an integral??

Ez =
1

4πε0

zQ
(z2 + R2)3/2
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