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@ To figure out the force on a particle due to a charge (or to define
the field) we used Coloumb’s Law.

@ Coloumb’s Law is very useful in many circumstances, but
sometimes another approach would be useful - that is where
Gauss’ Law comes in.

@ If you recall your mechanics experience, sometimes you used
Newton’s Laws to solve things, sometimes the conservation of
momentum or energy.

@ Which one should you use?

@ In principle it doesn’t matter...they are equivalent:

S L, dp

F=ma= o
Newton’s Laws can be derived from Conservation of Momentum
(and vice versa).

@ Coloumb’s Law and Gauss’ Law can be derived from each other
too. Use whichever is easiest/best for a certain situation.
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@ SYMMETRY — YRTEMMYS

@ Symmetries are very
important in physics.

@ Exploiting symmetries will
make solving problems much
easier.

@ What is a symmetry??
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What is Symmetry

A symmetry is an operation you can perform on a system which leaves
the system unchanged. In other words, you cannot tell that you did
anything!
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What is Symmetry

A symmetry is an operation you can perform on a system which leaves
the system unchanged. In other words, you cannot tell that you did
anything!

Consider an equilateral triangle as an example

You can rotate this by 120 degrees and not know that you did it. You
can flip it about axis Aa (or similar axes) and not know that you did it.
These are symmetry operations.
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operations could you perform on that
’ ’ cylinder and not know that you did

Rotation Itf) o]
about the e

axis @ Well, we could
o Translate the charge along the
Reflection cylinder
¢ 'C‘(‘)Ift'jl':ﬁng e Rotate the charge about an axis
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(See the figures to the left)
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(a) Is this a possible electric field of an infinitely (b) The charge distribution is not changed by the
long charged cylinder? Suppose the charge and reflection, but the field is. This field doesn’t
the field are reflected in a plane perpendicular match the symmetry of the cylinder, so the
to the a)fis. Reflection plane-_! cylinder’s field can’t look like this.
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@ The field on the left does not remain the same under a reflection!
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(a) Is this a possible electric field of an infinitely (b) The charge distribution is not changed by the
long charged cylinder? Suppose the charge and reflection, but the field is. This field doesn’t
the field are reflected in a plane perpendicular match the symmetry of the cylinder, so the

to the axis. Reflection plane\l cylinder’s field can’t look like this.
H 1
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@ The field on the left does not remain the same under a reflection!

@ That is not going to work because the charge distribution which
generates the field is symmetric with respect to reflection.

The symmetry of the electric field must match the symmetry of the
charge distribution. J
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.- The charge distribution
is not changed by
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.- This field is changed.
I v It doesn’t match
\ the symmetry of
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@ The previous page showed us that an
electric field component parallel to the
cylindrical axis will not work.

@ However, what about the electric field
pictured on the left?

@ Nope. Also bad. If we reflect it
through a plane containing the axis |
can tell it changed!
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@ Well, there is only one shape left!
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@ Well, there is only one shape left!

@ The electric field must be radial, pointing straight out from the
center of the cylinder.
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@ Well, there is only one shape left!

@ The electric field must be radial, pointing straight out from the
center of the cylinder.

@ You can see already how we exploit symmetries. We have used
them to rule out possible field shapes.
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Some Fundamental Symmetries

Planar symmetry Cylindrical symmetry

Spherical symmetry

asi ok
Basic e
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l v
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More e e e e e e e s el e e
complex
example:
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