
The Concept of Flux (28.2)

We also need to define the concept of flux.

By looking at the boxes above, can you tell
what is in the box?
The box on the right looks like it merely has
an electric field flowing through the box....not
a net charge inside.
We need a better box. We will define a
Gaussian surface surrounding a given
charge distribution.
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The Concept of Flux

A Gaussian surface is a mathematical
surface which encloses a region of
charge in 3D.

We can use the spherical symmetry
of the box on the left to determine that
there is a net positive charge at the
center of this box.
The electric field is everywhere
perpendicular to the spherical surface
and is the same magnitude
everywhere on the surface.
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The Concept of Flux

The wrong choice of surface can make the problem more difficult.

The box on the left has flux through 4/6 sides of the cube. So,
what is inside??
Choose a cylindrical box instead and it is clear...there is a
cylindrical charge distribution inside.
The lesson is: you need a closed surface of the right shape to
solve the problem quickest.
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Qualitative Summary of Flux

We enclose a charge distribution in a Gaussian surface

Flux is modeled on fluid flow
There is an outward flux through the surface from a positive
enclosed charge.
There is an inward flux through the surface from a negative
enclosed charge.
There is no net flux through a closed surface that does not
enclose net charge.
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Calculating Electric Flux (28.3)

The figures above show air flowing through a loop. Clearly the rate
of flow through the loop depends on the angle of the plane of the
loop compared to the initial air velocity.

We define n̂ as a unit vector perpendicular to the plane of the loop.
We define θ as the angle between ~v and n̂. Max flow is then at
θ = 0◦ and min flow is at θ = 90◦
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Calculating Electric Flux

We can decompose ~v into two components...only the
perpendicular one counts for the air flux. So, the volume of air per
second through the loop is

V = v⊥A = vA cosθ

The same idea applies to electric fields. We define electric flux as

Φ = E⊥A = EA cosθ
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Calculating Electric Flux

That expression looks a lot like the magnitude of a dot product of
2 vectors:

Φ = ~E · ~A = EA cosθ

Wait a minute! There is no such thing as an area vector!

Well,
now there is...we just made it up.
The area vector is perpendicular to the surface with magnitude
equal to the area of the surface. Makes for a convenient definition
of Φ.
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Electric Flux of a Nonuniform Electric Field

We have so far been looking at fluxes
which are constant over a surface.
What if the flux were different at every
point?

Well, maybe we can divide the
surface into little pieces over which
the flux is constant!
Because flux is a scalar, this is easier
than adding fields.

Consider a small area δ~Ai where the
electric field is Ei :

δφi = ~Ei · (δ~A)i
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Electric Flux of a Nonuniform Electric Field

The flux over the whole surface is

Φe =
∑

i

δΦi =
∑

i

~Ei · (δ~A)i

Now if we make δAi infinitely small we
have

Φe =

∫
surface

~E · d~A

this integral is known as a surface
integral. (instead of dividing things
into little 1D pieces, we divide into
little multi-D pieces)
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Electric Flux of a Nonuniform Electric Field

Consider the special case in which ~E is the same everywhere

Φe =

∫
surface

~E · d~A =

∫
surface

E cosθdA = E cosθ
∫

surface
dA

Well, we know the integral of dA is just A , so

Φe = EA cosθ

Good news! It makes sense in this limit....
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The Flux Through a Curved Surface

What if the surface is curved? Do the
same thing!

Divide the surface into small areas δA
and get the result

Φe =

∫
surface

~E · d~A
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The Flux Through a Curved Surface

There are a couple of special cases
for which things are easy:

1 If the electric field is everywhere
tangent to the surface, the electric
flux through the surface is zero.

2 If the electric field is everywhere
perpendicular to the surface and
has the same magnitude at every
point the flux is Φe = EA

If the surface is closed we change
notation a little

Φe =

∮
~E · d~A
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Example 28.2 - Flux through a closed cylinder

Example 28.2

A cylindrical charge distribution has created the electric field

~E =
E0r2

r2
0

r̂

where E0 and r0 are constants and where r̂ lies in the x-y plane.

Calculate the electric flux through a closed cylinder of length L and
radius R that is centered along the Z-axis.
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Example 28.2 - Flux through a closed cylinder

We draw a cylindrical Gaussian surface with three surfaces: the
top, the bottom, and the cylindrical wall.

The electric field is tangent to the surface everywhere on the top
and bottom, making the flux there zero.
For the cylindrical wall, the electric field perpendicular and has the
same strength at every point. Therefore the flux is

Φwall = EAwall
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Example 28.2 - Flux through a closed cylinder

To get the total flux we should add all the fluxes

Φe =

∮
~E · d~A = Φtop + Φbot + Φwall = 0 + 0 + EAwall = EAwall

We have done a “surface integral” by just diving the surface into
parts with tangent fields and perpendicular fields and exploiting
known properties. Doing integrals without integrating!
In this case we know both ~E and Awall , so:

Φe =

E0
R2

r2
0

 (2πRL) =
2πLR3

r2
0

E0
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Gauss’ Law (28.4)

Consider the electric field from a point
charge passing through a
surrounding Gaussian surface.

By Coulomb’s law we know the
electric field everywhere on the
sphere:

E =
q

4πε0r2

We know the flux is

Φe = EAsphere =
q

4πε0r2 4πr2 =
q
ε0

The point-charge + sphere is pretty
easy.
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Electric Flux is Independent of Radius

The electric flux through the whole
surface does not depend on the
radius of the sphere!

No matter how big the surface is, all
radial lines still pass through it.
However, the flux through a small
piece of the surface will be different.
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