
Traveling Waves

Leonardo Da Vinci (15th century)
“It often happens that the wave flees the place of its creation, while the
water does not; like the waves made in a field of grain by the wind,
where we see the waves running across the field while the grain
remains in place.”

So, a traveling wave is the propagation of a disturbance in a medium,
but the medium itself does not propagate.
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Traveling Waves

Traveling waves come in two types

Transverse (like light)

Longitudinal (like sound)
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Traveling Waves

Most of the time, we think of waves as mechanical waves - pulse on a
string, waves on the ocean, etc.

However, if light is a wave, what is waving?? The puzzling thing about
light is that it seems to propagate without a medium....when sunlight
travels through space to us, where is the string? where is the ocean?

It turns out that EM waves are not mechanical waves and do not
require a medium. They are a self-sustaining oscillation of the EM
field. We’ll talk more about EM fields later in the course, but you do not
need do understand them in order to calculate many interesting
properties of light. EM waves are describable by the same sort of
mathematics as mechanical waves.
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Wave Properties Review - Periodic Waves

Amplitude(A ): Maximum value of a disturbance

Period (T ): Time for one complete wave cycle to pass a fixed point
Frequency (f ): Number of wave cycles passing a given point per
unit time f = 1

T

Wave speed (v): During one period a fixed observer sees one
complete wavelength go by v = λ

T = λf
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Sinusoidal Waves

It is worth noting that

λ =
v
f

=
property of medium
property of source

In other words, the speed of light does not depend on whether you use
a lightbulb or a laser beam. However, the frequency does depend on
the source....and so does the wavelength.
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Sinusoidal Waves – Simulation

Simulation of transverse waves on a rope: http://phet.colorado.edu/
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http://phet.colorado.edu/sims/wave-on-a-string/wave-on-a-string_en.html


Mathematics of Sinusoidal Waves

We can define the displacement D of a particle in a medium due to the
passage of a sinusoidal wave (snapshot at t = 0):

D(x , t = 0) = A sin
(
2π

x
λ

+ φ0

)

This equation is periodic with period λ (D(x) = D(x + λ)). We can turn
this into a moving wave by making the position depend on time:
x → x − vt

D(x , t) = A sin
(
2π

x − vt
λ

+ φ0

)
= A sin

(
2π

(x
λ
−

t
T

)
+ φ0

)

Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 7 / 13



Mathematics of Sinusoidal Waves

We can define the displacement D of a particle in a medium due to the
passage of a sinusoidal wave (snapshot at t = 0):

D(x , t = 0) = A sin
(
2π

x
λ

+ φ0

)
This equation is periodic with period λ (D(x) = D(x + λ)).

We can turn
this into a moving wave by making the position depend on time:
x → x − vt

D(x , t) = A sin
(
2π

x − vt
λ

+ φ0

)
= A sin

(
2π

(x
λ
−

t
T

)
+ φ0

)

Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 7 / 13



Mathematics of Sinusoidal Waves

We can define the displacement D of a particle in a medium due to the
passage of a sinusoidal wave (snapshot at t = 0):

D(x , t = 0) = A sin
(
2π

x
λ

+ φ0

)
This equation is periodic with period λ (D(x) = D(x + λ)). We can turn
this into a moving wave by making the position depend on time:
x → x − vt

D(x , t) = A sin
(
2π

x − vt
λ

+ φ0

)
= A sin

(
2π

(x
λ
−

t
T

)
+ φ0

)

Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 7 / 13



Mathematics of Sinusoidal Waves

We can re-express this in different notation to clean things up a little.
Let’s define the angular frequency (ω) and wave number (k ) as

ω = 2πf =
2π
T
, k =

2π
λ

Wave number is the spatial analogue of frequency, it describes the
number of radians of wave cycle per unit distance.

This allows us to
write the equation from the previous page as

D(x , t) = A sin(kx − ωt + φ0)
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Example: Waves on a String

In this case displacement is y:

y(x , t) = A sin(kx − ωt + φ0)

The velocity of a particle on the string is given by the first derivative of
this expression, the acceleration by the second derivative

vy =
dy
dt

= −ωA cos(kx − ωt + φ0)

ay =
dvy

dt
= −ω2A sin(kx − ωt + φ0)

This is referring to the particle speed.
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Example: Waves on a String

Your text (page 613) then goes through a number of small algebraic
steps looking at the net force on a small segment of string.

Since
Knight does every step, I will not reproduce it here...but the answer is
quite interesting!

v =

√
Ts

µ

where Ts is the tension and µ is the linear density. This defines the
wave speed. Please note that it depends only on properties of the
medium and what that dependence is.
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Waves in 2 or 3 Dimensions

So far we have discussed waves in 1-D.
What do they look like in more than one
dimension?

This circular wave is made of
wave fronts. In 3-D you get spherical
waves. Very far from the source, these
waves look like plane waves.
Mathematically, little changes:

D(r , t) = A(r) sin(kr − ωt + φ0)

(note amplitude change as wave spreads)
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Phase and Phase Difference

The phase of the wave is

(kx − ωt + φ0)

Very soon the phase difference will be very important since we will talk
about interference. The phase difference is

∆φ = φ2 − φ1 = (kx2 − ωt + φ0) − (kx1 − ωt + φ0)

= k (x2 − x1) = k∆x = 2π
∆x
λ

Moving from one crest to another represents a phase shift of 2π
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EM Waves

As previously mentioned, light is an EM wave which travels at speed c
in a vacuum.

While it is not a mechanical wave like the ones we have
been talking about so far, a lot of the same physics applies. It is a
transverse wave with very high frequency:

f =
v
λ

=
3.00 × 108m/s

600nm
= 5.00 × 1014Hz
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