Electric Flux is Independent of Surface Shape

(a) Point charge  The spherical piec
centered on the ch:

@ What about the flux through some arbitrary
surface shape?

Gaussian surface The radial pie:

of arbitrary shape  lines extendi
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through these.

The approximation with spherical and radial
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become sufficiently small
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Electric Flux is Independent of Surface Shape

(a) Point charge  The spherical pieces are
\ centered on the charge.

@ What about the flux through some arbitrary
surface shape?

@ Approximate the surface by a patchwork of
radial and spherical pieces. Spherical pieces
Chuniiny dige Mg are centered on the charge. Radial pieces

e have 0 flux through them.

The approximation with spherical and radial

pieces can be as good as desired by letting the @ We can make the pieces arbitrar”y small to

pieces become sufficiently small

®) get the best model of the surface.

@ We can slide the pieces around and make a
sphere. So, the flux through any closed
surface is

) > - q
The spherical pieces can slide in or out to form d)e - E dA —

a complete sphere. Hence the flux through the
pieces is the same as the flux through a sphere.
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Charge Outside the Surface

@ We have only been talking about charges enclosed by the surface.
What about charges outside the surface?
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Charge Outside the Surface

@ We have only been talking about charges enclosed by the surface.
What about charges outside the surface?

@ Anything outside the surface will contribute nothing to the total
flux!

@ Any line entering the surface in one place will exit it in
another....there is no net flux unless the charge is enclosed.
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Multiple Charges

The fluxes due to charges @ What is the flux from a set of charges
outside the surface are all zero.
T4 through a surface?

95 Y
o
- q?\@) H
‘/ 9 @ \‘ @
Two-dimensional
) @ \\/ cross section of a
) Gaussian surface
/

Total charge
‘@
',?‘ @ 7 inside is Q.
@\\i
The tluxes due to charges
) mnde’the §u1tdce add.
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Multiple Charges

The fluxes due to charges @ What is the flux from a set of charges
outside the surface are all zero.
T4 through a surface?
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Multiple Charges

The fluxes due to charges @ What is the flux from a set of charges
outside the surface are all zero.
. through a surface?
® 0 @ We know that the electric field vectors
(o @\ © just add, and so will the fluxes
“« () \_— Two-dimensional
‘i " cross section of a
) \ Gaussian surface (De = (D1 + ¢2 + ¢3 + ...
/ @ | 1 > .
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/= Total charge € € €0 /insi
7Sl 0 0 0/inside
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a //@ =2 -2 an
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The fluxes due to charges €0
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where Qn=q1 + Q2 +---+ Qi
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Using Gauss’ Law - Example 28.4

Example 28.4

Gaussian surface inside
the sphere of charge

v What is the electric field inside a

uniformly charged sphere?
Sphere of /

total charge Q

Solving this with Coulomb’s Law and superposition would not be very
fun.
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Using Gauss’ Law - Example 28.4

Example 28.4

Gaussian surface inside
the sphere of charge

What is the electric field inside a

uniformly charged sphere?
Sphere of /

total charge Q

Solving this with Coulomb’s Law and superposition would not be very
fun. However, there is a clear spherical symmetry in the problem. Let’s
try it with a spherical Gaussian surface inside the original sphere.
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Using Gauss’ Law - Example 28.4

o Eis perpendicular to the surface and
has the same strength everywhere on
the surface. The flux is therefore

Q.
Gaussian surface inside q)e = EAsphere = 47’[ r2 E = —’n

the sphere of charge 60

)

Sphere of /

total charge Q
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Using Gauss’ Law - Example 28.4

o Eis perpendicular to the surface and
has the same strength everywhere on
the surface. The flux is therefore

Qin

Gaussian surface inside q)e = EAsphere = 47’[ r2 E = p

the sphere of charge

@ Qj, is the charge inside the Gaussian
st sphere (ie. the little one). The charge
N ‘ is uniform and the volume charge
density is

_Q_Q
P Vg %nR3
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Using Gauss’ Law - Example 28.4

@ The charge enclosed by the sphere is

! then

I

1

E

: Q (4 4 1

: The field inside the sphere Qin = p Vr = | —Tir - — Q
_Q | increases linearly with distance. 4 TC R3 3 RS
dme, R AN 3

é‘:»‘ " The field outside the

: sphere decreases as 1/r%.

| P

| 3

I

0 I r

)
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Using Gauss’ Law - Example 28.4

@ The charge enclosed by the sphere is

! then
£ Q |4 r

! o s 3

I The field inside the sphere Q = V = | —- (—T(r ) = — Q
_Q | \ increases linearly with distance. n p r [ 4 T R3 ) 3 RS
dme, R N 3

é‘:»‘ " The field outside the

. sphcr.:c decreases as 1/r%. o Gauss’ Law becomes

Tk ' 4nrz eg  4meo R3
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Conductors in Electrostatic Equilibrium (28.6)

@ We know that a conductor has any
. =2 .
excess charge on its surface and E is
zero anywhere on the inside (else
The electric field inside Charges would be moving).

the conductor is zero.

The flux through the Gaussian surface
is zero. There’s no net charge inside the
conductor. Hence all the excess charge
Dopthe Sopae.
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Conductors in Electrostatic Equilibrium (28.6)

@ We know that a conductor has any
. =2 .
excess charge on its surface and E is
zero anywhere on the inside (else
The electric field inside Charges would be moving).

the conductor is zero.

@ If you assume E = 0 everywhere and
draw a Gaussian surface then you know
that Q;, = 0 inside the surface. Any net
charge must be on the outer edge...hey,
we knew that already!

; @ The electric field at the surface is
The flux through the Gaussian surface .
is zero. There’s no net charge inside the perpendlCUIar to the Surface and haS
conductor. Hence all the excess charge magnitude (See your teXt):

is on the surface.

E
surface — —_
€

where n is surface charge density.



Conductors in Electrostatic Equilibrium

A hollow completely
enclosed by the conductor

The flux through the Gaussian surface is
zero. There’s no net charge inside, hence
no charge on this interior surface.

(a)

Parallel-plate capacitor

We want to exclude the

electric field from this region.

(b) The conducting box has been polarized
and has induced surface charges.

i

+ ottt
rrrn

The electric field is perpendicular
to all conducting surfaces.

@ If we make a hole in the conductor we can analyze it with a
Gaussian surface close to the hole. It is easy to conclude that

Qin - O
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Conductors in Electrostatic Equilibrium

A hollow completely
enclosed by the conductor

The flux through the Gaussian surface is
zero. There’s no net charge inside, hence
no charge on this interior surface.

(a)

Parallel-plate capacitor
Co E

B

H c-—-1

i | I

H I a !

it | g |

b 3

B

We want to exclude the

electric field from this region.

(b) The conducting box has been polarized
and has induced surface charges.

i

[

The electric field is perpendicular
to all conducting surfaces.

@ If we make a hole in the conductor we can analyze it with a
Gaussian surface close to the hole. It is easy to conclude that

Qin - 0

@ Since E is also zero inside the hole, this has practical applications:
we can build a Faraday cage
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The Electric Potential (Chapter 29)

@ We are working our way towards really practical stuff like
circuit-building.
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The Electric Potential (Chapter 29)

@ We are working our way towards really practical stuff like
circuit-building.

@ To get there, we need to talk about energy. Chapter 9 is all about
electric potential.

@ We have mostly focused on static charges so far. If we eventually
want to understand the motion of charges we will need to
understand electric potential.
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Mechanical Energy

@ The treatment of electric energy is developed by analogy to
mechanical energy (in particular using comparisons to
gravitational interactions). So, let’s review.
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Mechanical Energy

@ The treatment of electric energy is developed by analogy to
mechanical energy (in particular using comparisons to
gravitational interactions). So, let’s review.

@ Remember that mechanical energy is conserved by particles
which interact via conservative forces (eg. gravity, electric).

AEmech = AK + AU =0

@ Kinetic energy of a system is the sum of the kinetic energies of all
of the particles in the system.

@ Potential energy is the interaction energy of the system.
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Mechanical Energy

@ We define the change in potential energy in terms of the work
done by forces:

AU = Uf - Ui = — Winteraction forces
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Mechanical Energy

@ We define the change in potential energy in terms of the work
done by forces:

AU = Uf - Ui = — Winteraction forces

@ The component of force along the direction of motion does work
on an object. Non-constant forces need the “chop-up and
integrate” trick:

Sf f_)
W:Z(FS)jASj%j; Fsds:fi F.ds
_/ 1
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