
Electric Flux is Independent of Surface Shape

What about the flux through some arbitrary
surface shape?

Approximate the surface by a patchwork of
radial and spherical pieces. Spherical pieces
are centered on the charge. Radial pieces
have 0 flux through them.
We can make the pieces arbitrarily small to
get the best model of the surface.
We can slide the pieces around and make a
sphere. So, the flux through any closed
surface is

Φe =

∮
~E · d~A =

q
ε0
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Charge Outside the Surface

We have only been talking about charges enclosed by the surface.
What about charges outside the surface?

Anything outside the surface will contribute nothing to the total
flux!
Any line entering the surface in one place will exit it in
another....there is no net flux unless the charge is enclosed.
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Multiple Charges

What is the flux from a set of charges
through a surface?

We know that the electric field vectors
just add, and so will the fluxes

Φe = Φ1 + Φ2 + Φ3 + . . .

Φe =
(q1

ε0
+

q2

ε0
+ · · ·

qi

ε0

)
inside

+ (0)outside

Φe =

∮
~E · d~A =

Qin

ε0

where Qin = q1 + q2 + · · ·+ qi
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Using Gauss’ Law - Example 28.4

Example 28.4

What is the electric field inside a
uniformly charged sphere?

Solving this with Coulomb’s Law and superposition would not be very
fun.

However, there is a clear spherical symmetry in the problem. Let’s
try it with a spherical Gaussian surface inside the original sphere.
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Using Gauss’ Law - Example 28.4

~E is perpendicular to the surface and
has the same strength everywhere on
the surface. The flux is therefore

Φe = EAsphere = 4πr2E =
Qin

ε0

Qin is the charge inside the Gaussian
sphere (ie. the little one). The charge
is uniform and the volume charge
density is

ρ =
Q
VR

=
Q

4
3πR3
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Using Gauss’ Law - Example 28.4

The charge enclosed by the sphere is
then

Qin = ρVr =

 Q
4
3πR3

 (4
3
πr3

)
=

r3

R3 Q

Gauss’ Law becomes

E =
1

4πr2
Qin

ε0
=

1
4πε0

Q
R3 r
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Conductors in Electrostatic Equilibrium (28.6)

We know that a conductor has any
excess charge on its surface and ~E is
zero anywhere on the inside (else
charges would be moving).

If you assume E = 0 everywhere and
draw a Gaussian surface then you know
that Qin = 0 inside the surface. Any net
charge must be on the outer edge...hey,
we knew that already!
The electric field at the surface is
perpendicular to the surface and has
magnitude (see your text):

~Esurface =
η

ε0

where η is surface charge density.
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Conductors in Electrostatic Equilibrium

If we make a hole in the conductor we can analyze it with a
Gaussian surface close to the hole. It is easy to conclude that
Qin = 0.

Since ~E is also zero inside the hole, this has practical applications:
we can build a Faraday cage
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The Electric Potential (Chapter 29)

We are working our way towards really practical stuff like
circuit-building.

To get there, we need to talk about energy. Chapter 9 is all about
electric potential.
We have mostly focused on static charges so far. If we eventually
want to understand the motion of charges we will need to
understand electric potential.
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Mechanical Energy

The treatment of electric energy is developed by analogy to
mechanical energy (in particular using comparisons to
gravitational interactions). So, let’s review.

Remember that mechanical energy is conserved by particles
which interact via conservative forces (eg. gravity, electric).

∆Emech = ∆K + ∆U = 0

Kinetic energy of a system is the sum of the kinetic energies of all
of the particles in the system.
Potential energy is the interaction energy of the system.
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Mechanical Energy

We define the change in potential energy in terms of the work
done by forces:

∆U = Uf − Ui = −Winteraction forces

The component of force along the direction of motion does work
on an object. Non-constant forces need the “chop-up and
integrate” trick:

W =
∑

j

(Fs)j∆sj →

∫ sf

si

Fsds =

∫ f

i

~F · d~s
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