
The Electric Potential of a Point Charge (29.6)

We have only looked at a
capacitor...let’s not forget our old
friend the point charge!

Use a second charge (q′) to probe
the electric potential at a point in
space. The potential energy will be

Uq′+q =
1

4πε0

qq′

r

The potential is then

V =
Uq′+q

q′
=

1
4πε0

q
r

This extends through all of space with
V = 0 at infinity.
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Visualizing the Potential of a Point Charge
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The Electric Potential of a Charged Sphere

The electric potential of a charged sphere (from outside) is

V =
1

4πε0

Q
r

We call the potential right at the surface V0

V0 =
1

4πε0

Q
R

A sphere of radius R charged to V0 has total charge
Q = 4πε0RV0. Substituting this in gives

V =
R
r

V0
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The Electric Potential of Many Charges (29.7)

The electric potential, like the electric field, obeys the principle of
superposition:

V =
∑

i

1
4πε0

qi

ri

where ri is the distance from the charge qi to the point in space at
which the potential is being calculated.

As we did before, we will extend our calculation to a continuous
charge distribution. Often this involves an integration.
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The Potential of a Ring of Charge

The Potential of a Ring of Charge (Example 29.11)

A thin, uniformly charged ring of radius R
has total charge Q . Find the potential at
distance z on the axis of the ring.

The distance ri is
ri =

√
R2 + z2

The potential is then the sum:

V =

N∑
i=1

1
4πε0

∆Q
ri

=
1

4πε0

1
√

R2 + z2

N∑
i=1

∆Q =
1

4πε0

Q
√

R2 + z2
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The Potential of a Disk of Charge

The Potential of a Disk of Charge (Example 29.12)

A thin, uniformly charged disk of radius R has
total charge Q . Find the potential at distance z
on the axis of the disk.

The disk has uniform charge density

η =
Q
A

=
Q
πR2

We know the potential due to any ring

Vi =
1

4πε0

∆Qi√
r2
i + z2

Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 6 / 19



The Potential of a Disk of Charge

The Potential of a Disk of Charge (Example 29.12)

A thin, uniformly charged disk of radius R has
total charge Q . Find the potential at distance z
on the axis of the disk.

The disk has uniform charge density

η =
Q
A

=
Q
πR2

We know the potential due to any ring

Vi =
1

4πε0

∆Qi√
r2
i + z2

Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 6 / 19



The Potential of a Disk of Charge

Now sum over rings

V =
1

4πε0

N∑
i=1

∆Qi√
r2
i + z2

To turn this into an integral we need to
substitute for ∆Qi

∆Qi = η∆Ai =
Q
πR2 2πr∆r =

2Q
R2 ri∆r

The potential at P is then

V =
Q

2πε0R2

∫ R

0

rdr
√

r2 + z2
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The Potential of a Disk of Charge

You can do this integral by substitution

u = r2 + z2

rdr =
1
2

du

V =
Q

2πε0R2

∫ R2+z2

z2

1
2du

u1/2

=
Q

2πε0R2 u1/2
∣∣∣∣∣R2+z2

z2

=
Q

2πε0R2

(√
R2 + z2 − |z|

)
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Potential and Field (Chapter 30)

Now we start Chapter 30 of your text.

We will learn the connection between potential and electric field.
You will be able to calculate the potential from the field and vice
versa.
We will learn sources of potential - batteries.
We will learn Kirchhoff’s Law.
We will learn how to use capacitors.
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Finding Potential from Electric Field

Given the electric field in some region of space, how do we
calculate the potential?

The potential difference is

∆V = Vf − Vi = −

∫ f

i

~E · d~s

We know that an integral is the area under a curve, so
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Finding Potential from Electric Field

Let’s do a practical example with a zero of
potential chosen at infinity

Integrating along a straight line from P to
f = ∞ gives

∆V = V(∞) − V(r) = −

∫
∞

r
Esds

We know the electric field is

Es =
1

4πε0

q
s2

Thus the potential at r is

V(r) = V(∞) +
q

4πε0

∫
∞

r

ds
s2

=
q

4πε0

−1
s

∣∣∣∣∣∞
r

=
1

4πε0

q
r
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Sources of Electric Potential (30.2)

Any charge separation causes a potential
difference.

There is a potential difference between
electrodes (1st picture) of

∆V = Vpos − Vneg = −

∫ pos

neg
Esds

In class we have seen a mechanical charge
separator - a Van de Graaff generator.
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Batteries and emf

We are more familiar with a chemical
charge separator - a battery

We will ignore the chemistry and discuss
the battery as a charge escalator which
lifts positive charges from the negative
terminal to the positive terminal.
Doing this requires work...energy from
chemical reactions. In an ideal battery
∆U = Wchem

The work done per charge in a battery is
known as its emf (E). For example
E = 1.5V ,9V ,etc
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Batteries and emf

The voltage between the terminals is
called the terminal voltage and is just
slightly less than E.

If you put multiple batteries in series (see
left) the combined voltage is simply the
sum of the two individual voltages.

∆Vseries = ∆V1 + ∆V2 + · · ·
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Finding the Electric Field from the Potential (30.3)

The work done by the electric field as
q moves through a small distance ∆s
is

W = Fs∆s = qEs∆s

The potential difference is

∆V =
∆Uq+sources

q
=
−W

q
= −Es∆s

Rearranging and making ∆s infinitely
small gives

Es = −
dV
ds
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Finding the Electric Field from the Potential

Let’s use a point charge as an example

Choose the s axis to be in the radial direction, parallel to ~E and we
see

Er = −
dV
dr

= −
d
dr

( q
4πε0r

)
=

1
4πε0

q
r2

Similarly, we could have started with potential and derived the ~E of
a charged ring or disk with a simple derivative!

The geometric interpretation is that the ~E is the slope of the V vs.
s graph.
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The Geometry of Potential and Field

The figure shows 2 equipotential
surfaces, one at positive potential with
respect to the other.

Consider 2 displacements ∆ ~s1 and ∆ ~s2.
For ∆ ~s1 the change in potential is
zero...so the component of ~E along that
direction must be zero (E = −dV/ds).
∆ ~s2 is perpendicular to the surface.
There is definitely a potential difference
there and

E⊥ = −
dV
ds
≈ −

V+ − V−
∆s

~E is perpendicular to equipotential
surfaces and points “downhill”.
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The Geometry of Potential and Field

~E = Ex ı̂+ Ey ̂+ Ez k̂ = −

(
∂V
∂x
ı̂+

∂V
∂y

̂+
∂V
∂z

k̂
)

~E = −∇V
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The Geometry of Potential and Field

The work done moving a charge from
point 1 to point 2 is independent of
the path.

Moving from point 1 to 2 on the blue
path leads to a potential increase of
20V. Moving from 2 to 1 on the red
path leads to a decrease of 20V.
Kirchhoff’s Loop Law says that the
potential differences encountered
while moving around a loop is zero

∆Vloop =
∑

i

(∆V)i = 0
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