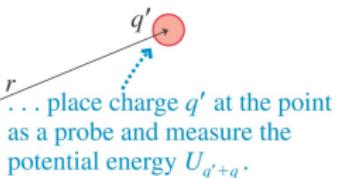


The Electric Potential of a Point Charge (29.6)

- We have only looked at a capacitor...let's not forget our old friend the point charge!

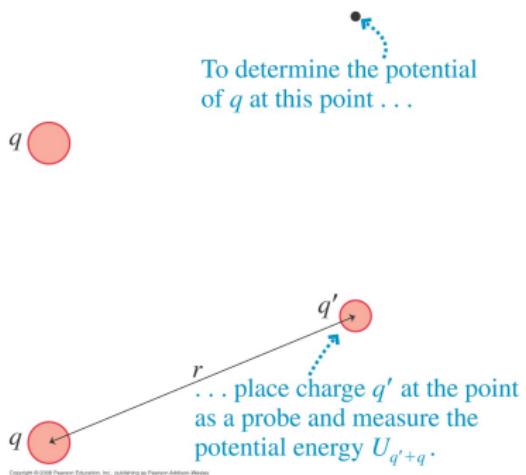


Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

The Electric Potential of a Point Charge (29.6)

- We have only looked at a capacitor...let's not forget our old friend the point charge!
- Use a second charge (q') to probe the electric potential at a point in space. The potential energy will be

$$U_{q'+q} = \frac{1}{4\pi\epsilon_0} \frac{qq'}{r}$$



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

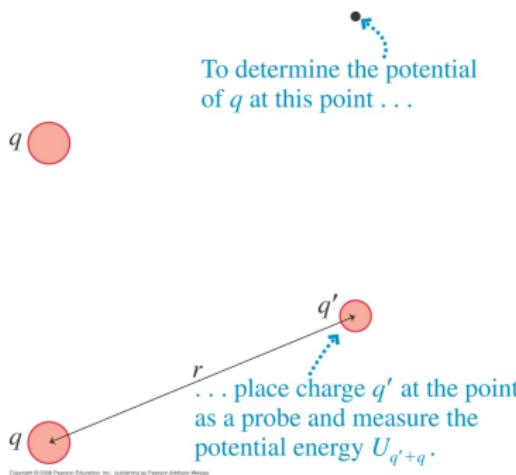
The Electric Potential of a Point Charge (29.6)

- We have only looked at a capacitor...let's not forget our old friend the point charge!
- Use a second charge (q') to probe the electric potential at a point in space. The potential energy will be

$$U_{q'+q} = \frac{1}{4\pi\epsilon_0} \frac{qq'}{r}$$

- The potential is then

$$V = \frac{U_{q'+q}}{q'} = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$



The Electric Potential of a Point Charge (29.6)

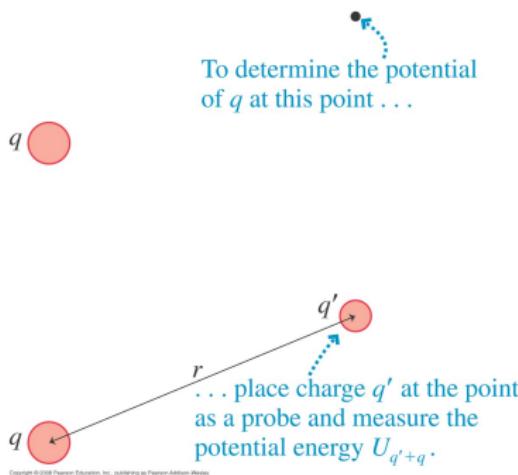
- We have only looked at a capacitor...let's not forget our old friend the point charge!
- Use a second charge (q') to probe the electric potential at a point in space. The potential energy will be

$$U_{q'+q} = \frac{1}{4\pi\epsilon_0} \frac{qq'}{r}$$

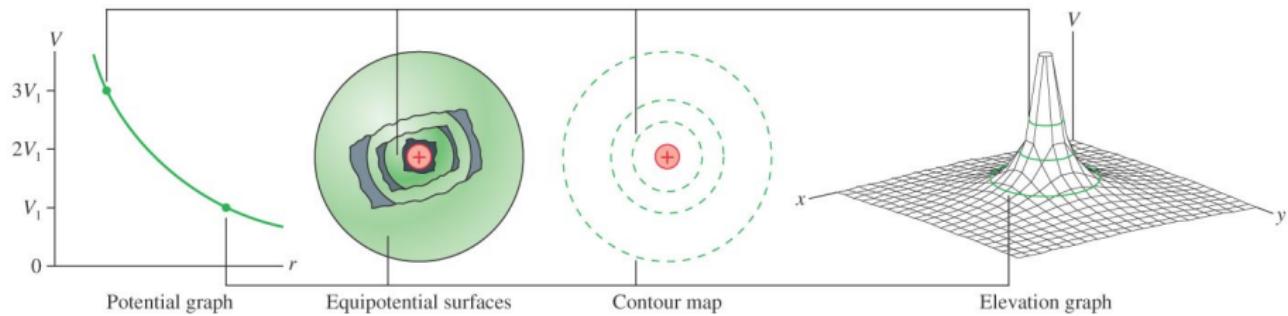
- The potential is then

$$V = \frac{U_{q'+q}}{q'} = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$

- This extends through all of space with $V = 0$ at infinity.



Visualizing the Potential of a Point Charge



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The Electric Potential of a Charged Sphere

- The electric potential of a charged sphere (from outside) is

$$V = \frac{1}{4\pi\epsilon_0} \frac{Q}{r}$$

The Electric Potential of a Charged Sphere

- The electric potential of a charged sphere (from outside) is

$$V = \frac{1}{4\pi\epsilon_0} \frac{Q}{r}$$

- We call the potential right at the surface V_0

$$V_0 = \frac{1}{4\pi\epsilon_0} \frac{Q}{R}$$

The Electric Potential of a Charged Sphere

- The electric potential of a charged sphere (from outside) is

$$V = \frac{1}{4\pi\epsilon_0} \frac{Q}{r}$$

- We call the potential right at the surface V_0

$$V_0 = \frac{1}{4\pi\epsilon_0} \frac{Q}{R}$$

- A sphere of radius R charged to V_0 has total charge $Q = 4\pi\epsilon_0 R V_0$. Substituting this in gives

$$V = \frac{R}{r} V_0$$

The Electric Potential of Many Charges (29.7)

- The electric potential, like the electric field, obeys the principle of superposition:

$$V = \sum_i \frac{1}{4\pi\epsilon_0} \frac{q_i}{r_i}$$

where r_i is the distance from the charge q_i to the point in space at which the potential is being calculated.

The Electric Potential of Many Charges (29.7)

- The electric potential, like the electric field, obeys the principle of superposition:

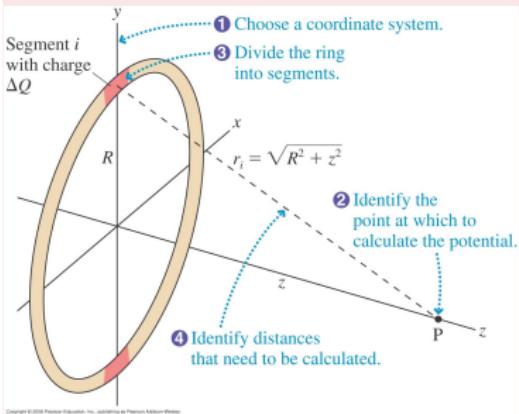
$$V = \sum_i \frac{1}{4\pi\epsilon_0} \frac{q_i}{r_i}$$

where r_i is the distance from the charge q_i to the point in space at which the potential is being calculated.

- As we did before, we will extend our calculation to a continuous charge distribution. Often this involves an integration.

The Potential of a Ring of Charge

The Potential of a Ring of Charge (Example 29.11)



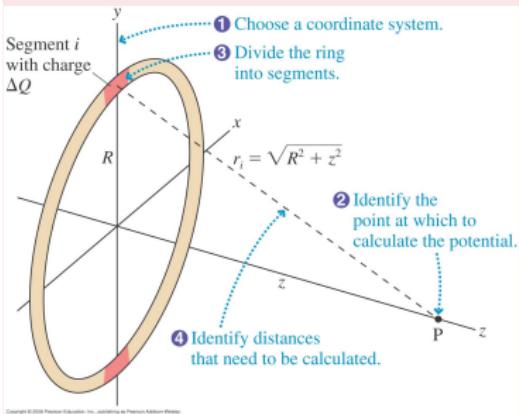
A thin, uniformly charged ring of radius R has total charge Q . Find the potential at distance z on the axis of the ring.

- The distance r_i is

$$r_i = \sqrt{R^2 + z^2}$$

The Potential of a Ring of Charge

The Potential of a Ring of Charge (Example 29.11)



A thin, uniformly charged ring of radius R has total charge Q . Find the potential at distance z on the axis of the ring.

- The distance r_i is

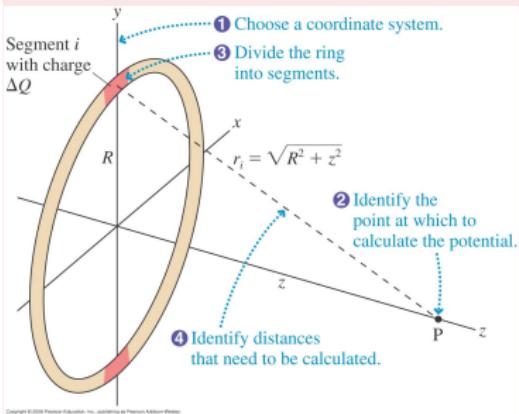
$$r_i = \sqrt{R^2 + z^2}$$

- The potential is then the sum:

$$V = \sum_{i=1}^N \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{r_i}$$

The Potential of a Ring of Charge

The Potential of a Ring of Charge (Example 29.11)



A thin, uniformly charged ring of radius R has total charge Q . Find the potential at distance z on the axis of the ring.

- The distance r_i is

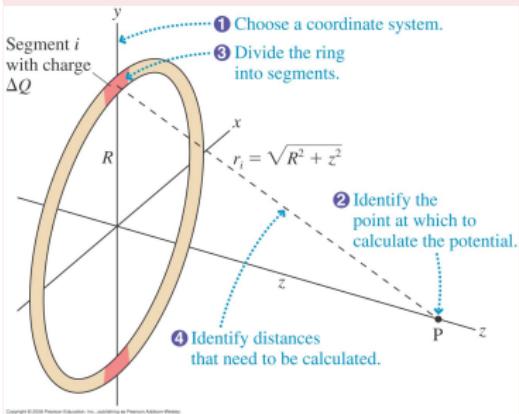
$$r_i = \sqrt{R^2 + z^2}$$

- The potential is then the sum:

$$V = \sum_{i=1}^N \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{r_i}$$

The Potential of a Ring of Charge

The Potential of a Ring of Charge (Example 29.11)



A thin, uniformly charged ring of radius R has total charge Q . Find the potential at distance z on the axis of the ring.

- The distance r_i is

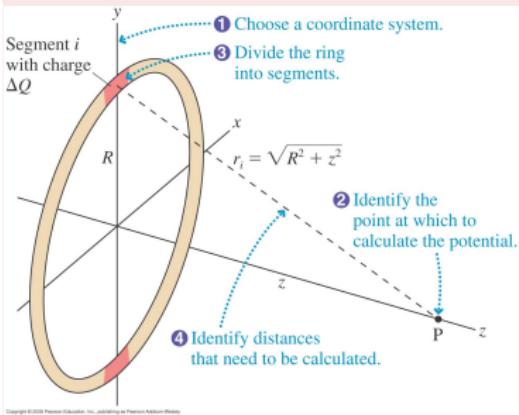
$$r_i = \sqrt{R^2 + z^2}$$

- The potential is then the sum:

$$V = \sum_{i=1}^N \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{r_i} = \frac{1}{4\pi\epsilon_0} \frac{1}{\sqrt{R^2 + z^2}} \sum_{i=1}^N \Delta Q$$

The Potential of a Ring of Charge

The Potential of a Ring of Charge (Example 29.11)



A thin, uniformly charged ring of radius R has total charge Q . Find the potential at distance z on the axis of the ring.

- The distance r_i is

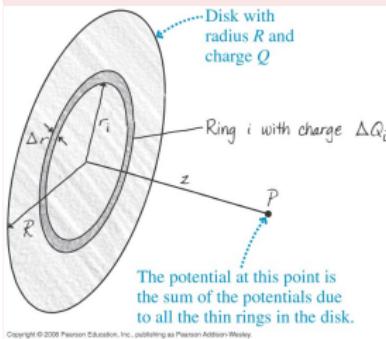
$$r_i = \sqrt{R^2 + z^2}$$

- The potential is then the sum:

$$V = \sum_{i=1}^N \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{r_i} = \frac{1}{4\pi\epsilon_0} \frac{1}{\sqrt{R^2 + z^2}} \sum_{i=1}^N \Delta Q = \frac{1}{4\pi\epsilon_0} \frac{Q}{\sqrt{R^2 + z^2}}$$

The Potential of a Disk of Charge

The Potential of a Disk of Charge (Example 29.12)



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison Wesley.

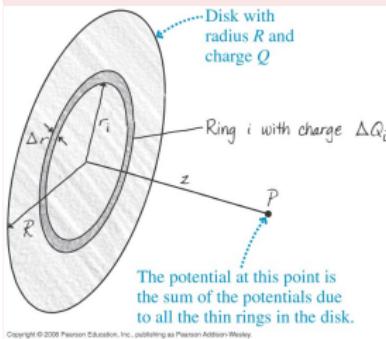
A thin, uniformly charged disk of radius R has total charge Q . Find the potential at distance z on the axis of the disk.

- The disk has uniform charge density

$$\eta = \frac{Q}{A} = \frac{Q}{\pi R^2}$$

The Potential of a Disk of Charge

The Potential of a Disk of Charge (Example 29.12)



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

A thin, uniformly charged disk of radius R has total charge Q . Find the potential at distance z on the axis of the disk.

- The disk has uniform charge density

$$\eta = \frac{Q}{A} = \frac{Q}{\pi R^2}$$

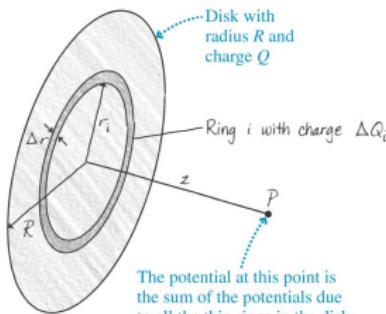
- We know the potential due to any ring

$$V_i = \frac{1}{4\pi\epsilon_0} \frac{\Delta Q_i}{\sqrt{r_i^2 + z^2}}$$

The Potential of a Disk of Charge

- Now sum over rings

$$V = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^N \frac{\Delta Q_i}{\sqrt{r_i^2 + z^2}}$$

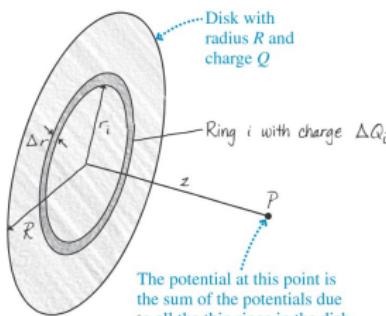


Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The Potential of a Disk of Charge

- Now sum over rings

$$V = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^N \frac{\Delta Q_i}{\sqrt{r_i^2 + z^2}}$$



- To turn this into an integral we need to substitute for ΔQ_i

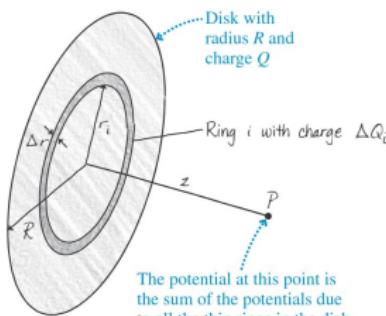
$$\Delta Q_i = \eta \Delta A_i = \frac{Q}{\pi R^2} 2\pi r_i \Delta r = \frac{2Q}{R^2} r_i \Delta r$$

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The Potential of a Disk of Charge

- Now sum over rings

$$V = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^N \frac{\Delta Q_i}{\sqrt{r_i^2 + z^2}}$$



- To turn this into an integral we need to substitute for ΔQ_i

$$\Delta Q_i = \eta \Delta A_i = \frac{Q}{\pi R^2} 2\pi r_i \Delta r = \frac{2Q}{R^2} r_i \Delta r$$

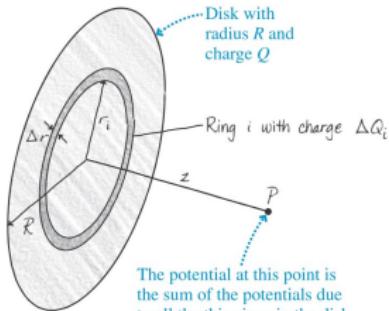
- The potential at P is then

$$V = \frac{Q}{2\pi\epsilon_0 R^2} \int_0^R \frac{r dr}{\sqrt{r^2 + z^2}}$$

The Potential of a Disk of Charge

- You can do this integral by substitution

$$u = r^2 + z^2$$

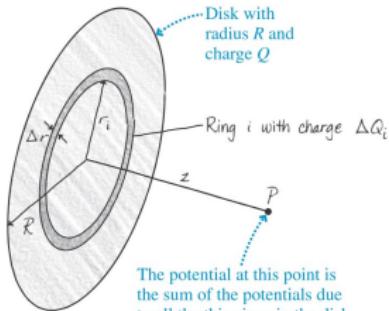


Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The Potential of a Disk of Charge

- You can do this integral by substitution

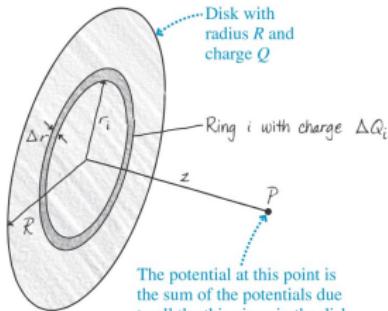
$$u = r^2 + z^2$$



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The Potential of a Disk of Charge

- You can do this integral by substitution



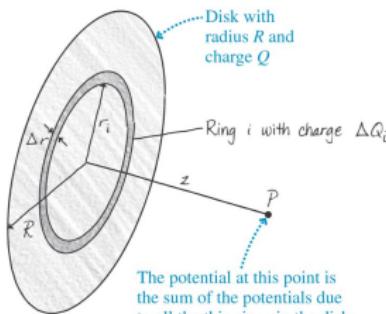
$$u = r^2 + z^2$$
$$rdr = \frac{1}{2}du$$

$$V = \frac{Q}{2\pi\epsilon_0 R^2} \int_{z^2}^{R^2+z^2} \frac{\frac{1}{2}du}{u^{1/2}}$$

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The Potential of a Disk of Charge

- You can do this integral by substitution

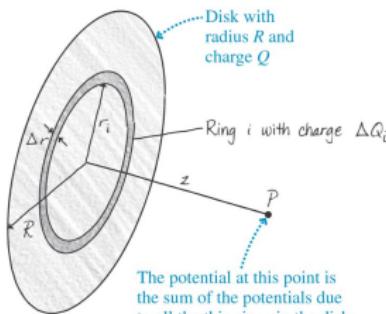


Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

$$\begin{aligned}u &= r^2 + z^2 \\r dr &= \frac{1}{2} du \\V &= \frac{Q}{2\pi\epsilon_0 R^2} \int_{z^2}^{R^2+z^2} \frac{\frac{1}{2} du}{u^{1/2}} \\&= \frac{Q}{2\pi\epsilon_0 R^2} u^{1/2} \Big|_{z^2}^{R^2+z^2}\end{aligned}$$

The Potential of a Disk of Charge

- You can do this integral by substitution



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

$$\begin{aligned}u &= r^2 + z^2 \\r dr &= \frac{1}{2} du \\V &= \frac{Q}{2\pi\epsilon_0 R^2} \int_{z^2}^{R^2+z^2} \frac{\frac{1}{2} du}{u^{1/2}} \\&= \frac{Q}{2\pi\epsilon_0 R^2} u^{1/2} \Big|_{z^2}^{R^2+z^2} \\&= \frac{Q}{2\pi\epsilon_0 R^2} \left(\sqrt{R^2 + z^2} - |z| \right)\end{aligned}$$

Potential and Field (Chapter 30)

- Now we start Chapter 30 of your text.

Potential and Field (Chapter 30)

- Now we start Chapter 30 of your text.
- We will learn the connection between potential and electric field. You will be able to calculate the potential from the field and vice versa.

Potential and Field (Chapter 30)

- Now we start Chapter 30 of your text.
- We will learn the connection between potential and electric field. You will be able to calculate the potential from the field and vice versa.
- We will learn sources of potential - batteries.

Potential and Field (Chapter 30)

- Now we start Chapter 30 of your text.
- We will learn the connection between potential and electric field. You will be able to calculate the potential from the field and vice versa.
- We will learn sources of potential - batteries.
- We will learn Kirchhoff's Law.

Potential and Field (Chapter 30)

- Now we start Chapter 30 of your text.
- We will learn the connection between potential and electric field. You will be able to calculate the potential from the field and vice versa.
- We will learn sources of potential - batteries.
- We will learn Kirchhoff's Law.
- We will learn how to use capacitors.

Finding Potential from Electric Field

- Given the electric field in some region of space, how do we calculate the potential?

Finding Potential from Electric Field

- Given the electric field in some region of space, how do we calculate the potential?
- The potential difference is

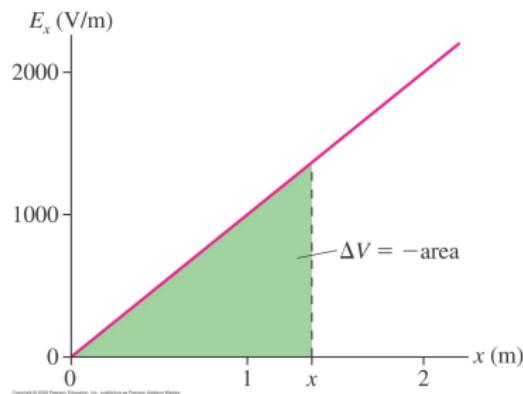
$$\Delta V = V_f - V_i = - \int_i^f \vec{E} \cdot d\vec{s}$$

Finding Potential from Electric Field

- Given the electric field in some region of space, how do we calculate the potential?
- The potential difference is

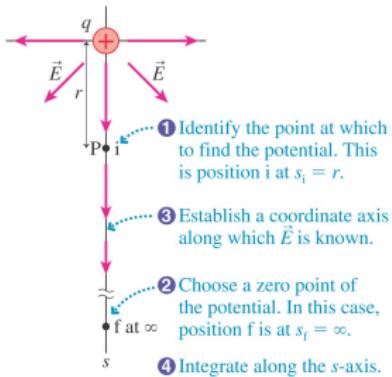
$$\Delta V = V_f - V_i = - \int_i^f \vec{E} \cdot d\vec{s}$$

- We know that an integral is the area under a curve, so



Finding Potential from Electric Field

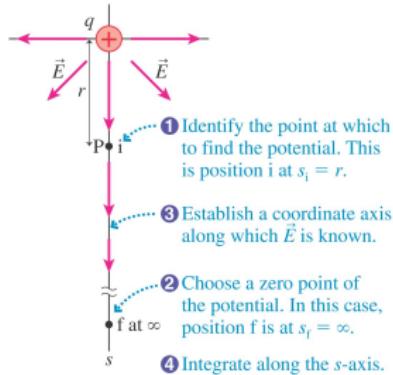
- Let's do a practical example with a zero of potential chosen at infinity



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison Wesley

Finding Potential from Electric Field

- Let's do a practical example with a zero of potential chosen at infinity
- Integrating along a straight line from P to $f = \infty$ gives

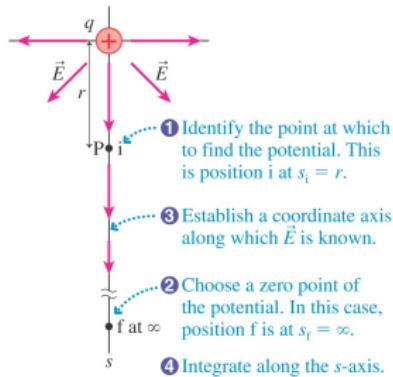


$$\Delta V = V(\infty) - V(r) = - \int_r^{\infty} E_s ds$$

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison Wesley

Finding Potential from Electric Field

- Let's do a practical example with a zero of potential chosen at infinity
- Integrating along a straight line from P to $f = \infty$ gives



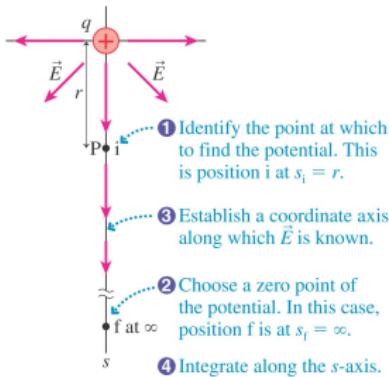
$$\Delta V = V(\infty) - V(r) = - \int_r^{\infty} E_s ds$$

- We know the electric field is

$$E_s = \frac{1}{4\pi\epsilon_0} \frac{q}{s^2}$$

Finding Potential from Electric Field

- Let's do a practical example with a zero of potential chosen at infinity
- Integrating along a straight line from P to $f = \infty$ gives



$$\Delta V = V(\infty) - V(r) = - \int_r^{\infty} E_s ds$$

- We know the electric field is

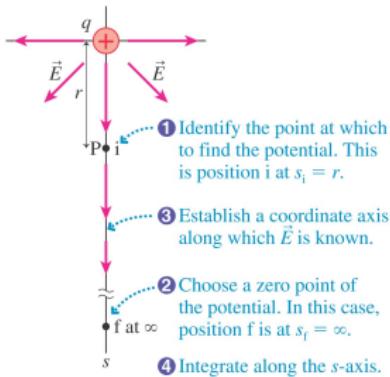
$$E_s = \frac{1}{4\pi\epsilon_0} \frac{q}{s^2}$$

- Thus the potential at r is

$$V(r) = V(\infty) + \frac{q}{4\pi\epsilon_0} \int_r^{\infty} \frac{ds}{s^2}$$

Finding Potential from Electric Field

- Let's do a practical example with a zero of potential chosen at infinity
- Integrating along a straight line from P to $f = \infty$ gives



$$\Delta V = V(\infty) - V(r) = - \int_r^{\infty} E_s ds$$

- We know the electric field is

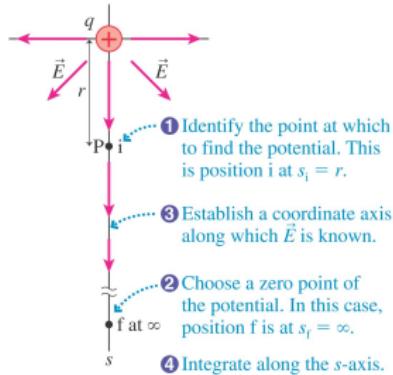
$$E_s = \frac{1}{4\pi\epsilon_0} \frac{q}{s^2}$$

- Thus the potential at r is

$$V(r) = V(\infty) + \frac{q}{4\pi\epsilon_0} \int_r^{\infty} \frac{ds}{s^2}$$

Finding Potential from Electric Field

- Let's do a practical example with a zero of potential chosen at infinity
- Integrating along a straight line from P to $f = \infty$ gives



$$\Delta V = V(\infty) - V(r) = - \int_r^{\infty} E_s ds$$

- We know the electric field is

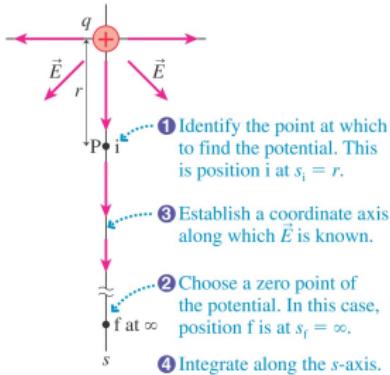
$$E_s = \frac{1}{4\pi\epsilon_0} \frac{q}{s^2}$$

- Thus the potential at r is

$$V(r) = V(\infty) + \frac{q}{4\pi\epsilon_0} \int_r^{\infty} \frac{ds}{s^2} = \frac{q}{4\pi\epsilon_0} \frac{-1}{s} \bigg|_r^{\infty}$$

Finding Potential from Electric Field

- Let's do a practical example with a zero of potential chosen at infinity
- Integrating along a straight line from P to $f = \infty$ gives



$$\Delta V = V(\infty) - V(r) = - \int_r^{\infty} E_s ds$$

- We know the electric field is

$$E_s = \frac{1}{4\pi\epsilon_0} \frac{q}{s^2}$$

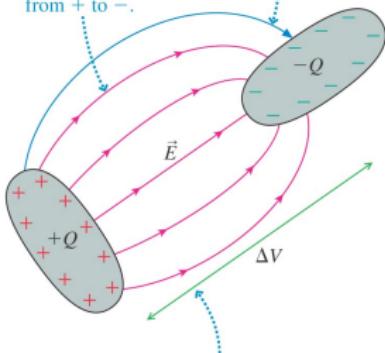
- Thus the potential at r is

$$V(r) = V(\infty) + \frac{q}{4\pi\epsilon_0} \int_r^{\infty} \frac{ds}{s^2} = \frac{q}{4\pi\epsilon_0} \left. \frac{-1}{s} \right|_r^{\infty} = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$

Sources of Electric Potential (30.2)

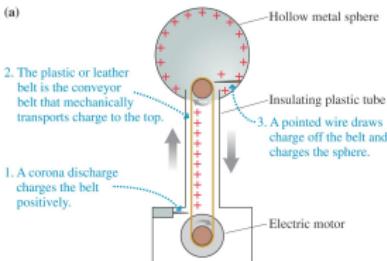
1. Charge is separated by moving electrons from one electrode to the other.

2. The charge separation creates an electric field from + to -.



3. Because of the electric field, there's a potential difference between the electrodes.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

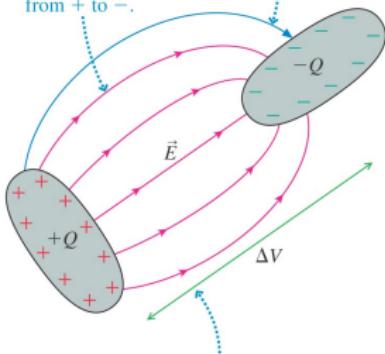


- Any charge separation causes a potential difference.

Sources of Electric Potential (30.2)

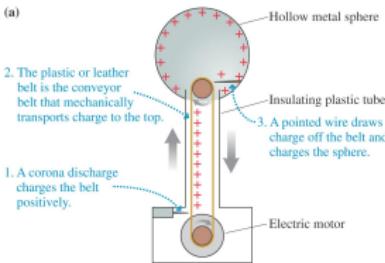
1. Charge is separated by moving electrons from one electrode to the other.

2. The charge separation creates an electric field from + to -.



3. Because of the electric field, there's a potential difference between the electrodes.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.



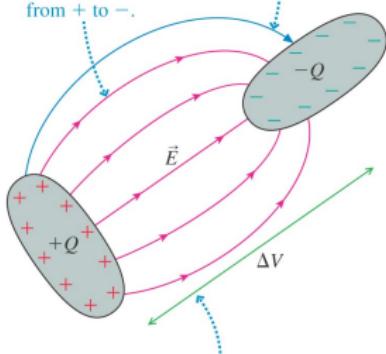
- Any charge separation causes a potential difference.
- There is a potential difference between electrodes (1st picture) of

$$\Delta V = V_{pos} - V_{neg} = - \int_{neg}^{pos} E_s ds$$

Sources of Electric Potential (30.2)

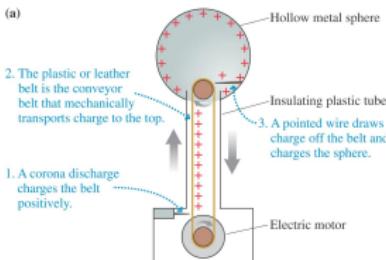
1. Charge is separated by moving electrons from one electrode to the other.

2. The charge separation creates an electric field from + to -.



3. Because of the electric field, there's a potential difference between the electrodes.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

- Any charge separation causes a potential difference.

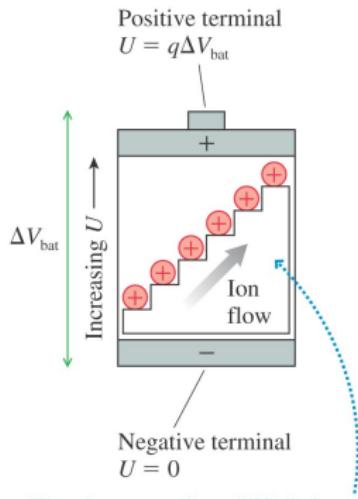
- There is a potential difference between electrodes (1st picture) of

$$\Delta V = V_{pos} - V_{neg} = - \int_{neg}^{pos} E_s ds$$

- In class we have seen a mechanical charge separator - a Van de Graaff generator.

Batteries and emf

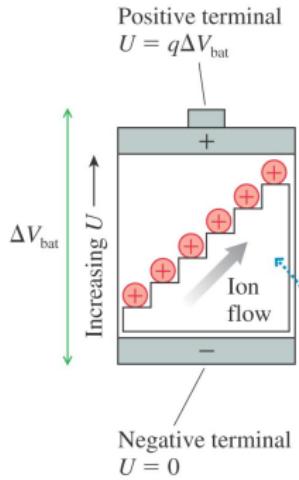
- We are more familiar with a chemical charge separator - a **battery**



The charge escalator “lifts” charge from the negative side to the positive side. Charge q gains energy $\Delta U = q\Delta V_{\text{bat}}$.

Copyright © 2009 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Batteries and emf

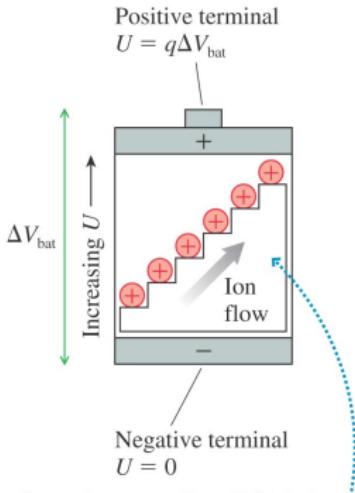


The charge escalator “lifts” charge from the negative side to the positive side. Charge q gains energy $\Delta U = q\Delta V_{\text{bat}}$.

Copyright © 2009 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

- We are more familiar with a chemical charge separator - a **battery**
- We will ignore the chemistry and discuss the battery as a **charge escalator** which lifts positive charges from the negative terminal to the positive terminal.

Batteries and emf

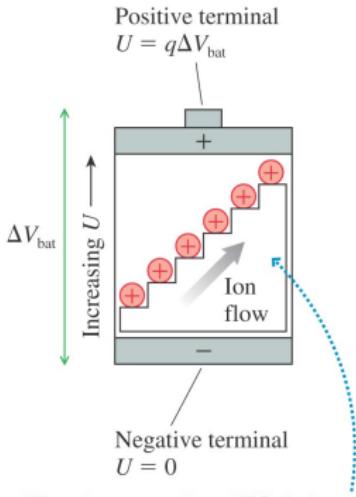


The charge escalator “lifts” charge from the negative side to the positive side. Charge q gains energy $\Delta U = q\Delta V_{bat}$.

Copyright © 2009 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

- We are more familiar with a chemical charge separator - a **battery**
- We will ignore the chemistry and discuss the battery as a **charge escalator** which lifts positive charges from the negative terminal to the positive terminal.
- Doing this requires work...energy from chemical reactions. In an **ideal battery** $\Delta U = W_{chem}$

Batteries and emf

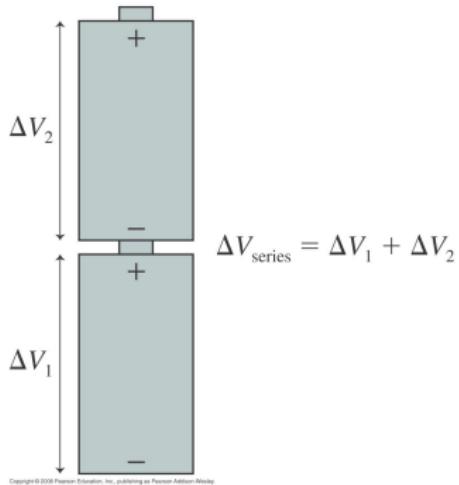


The charge escalator "lifts" charge from the negative side to the positive side. Charge q gains energy $\Delta U = q\Delta V_{bat}$.

Copyright © 2009 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

- We are more familiar with a chemical charge separator - a **battery**
- We will ignore the chemistry and discuss the battery as a **charge escalator** which lifts positive charges from the negative terminal to the positive terminal.
- Doing this requires work...energy from chemical reactions. In an **ideal battery** $\Delta U = W_{chem}$
- The work done per charge in a battery is known as its emf (\mathcal{E}). For example $\mathcal{E} = 1.5V, 9V, \text{etc}$

Batteries and emf

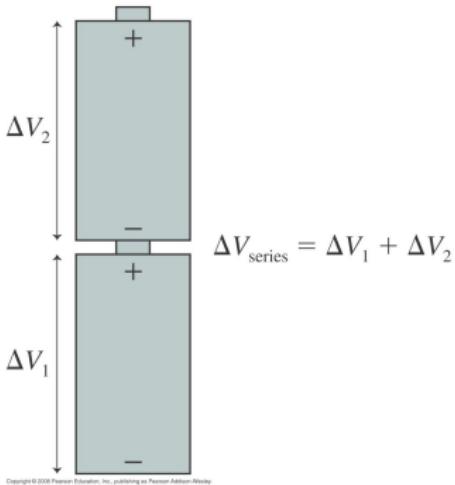


- The voltage between the terminals is called the **terminal voltage** and is just slightly less than \mathcal{E} .

$$\Delta V_{\text{series}} = \Delta V_1 + \Delta V_2$$

Copyright 0 2008 Pearson Education, Inc. publishing as Pearson Addison-Wesley

Batteries and emf



- The voltage between the terminals is called the **terminal voltage** and is just slightly less than \mathcal{E} .
- If you put multiple batteries in series (see left) the combined voltage is simply the sum of the two individual voltages.

$$\Delta V_{\text{series}} = \Delta V_1 + \Delta V_2 + \dots$$

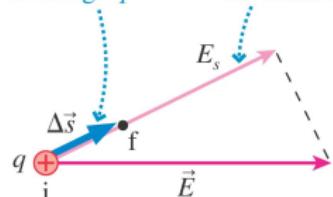
Finding the Electric Field from the Potential (30.3)

- The work done by the electric field as q moves through a small distance Δs is

$$W = F_s \Delta s = q E_s \Delta s$$

A very small displacement of charge q

E_s , the component of \vec{E} in the direction of motion, is essentially constant over the small distance Δs .



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Finding the Electric Field from the Potential (30.3)

- The work done by the electric field as q moves through a small distance Δs is

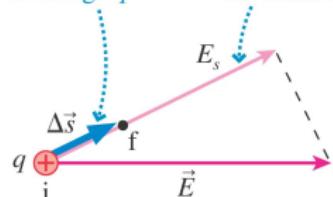
$$W = F_s \Delta s = q E_s \Delta s$$

- The potential difference is

$$\Delta V = \frac{\Delta U_{q+\text{sources}}}{q} = \frac{-W}{q} = -E_s \Delta s$$

A very small displacement of charge q

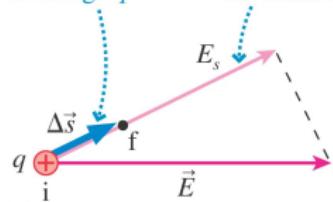
E_s , the component of \vec{E} in the direction of motion, is essentially constant over the small distance Δs .



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Finding the Electric Field from the Potential (30.3)

A very small displacement of charge q



E_s , the component of \vec{E} in the direction of motion, is essentially constant over the small distance Δs .

- The work done by the electric field as q moves through a small distance Δs is

$$W = F_s \Delta s = q E_s \Delta s$$

- The potential difference is

$$\Delta V = \frac{\Delta U_{q+sources}}{q} = \frac{-W}{q} = -E_s \Delta s$$

- Rearranging and making Δs infinitely small gives

$$E_s = -\frac{dV}{ds}$$

Finding the Electric Field from the Potential

- Let's use a point charge as an example

Finding the Electric Field from the Potential

- Let's use a point charge as an example
- Choose the s axis to be in the radial direction, parallel to \vec{E} and we see

$$E_r = -\frac{dV}{dr} = -\frac{d}{dr} \left(\frac{q}{4\pi\epsilon_0 r} \right) = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$$

Finding the Electric Field from the Potential

- Let's use a point charge as an example
- Choose the s axis to be in the radial direction, parallel to \vec{E} and we see

$$E_r = -\frac{dV}{dr} = -\frac{d}{dr} \left(\frac{q}{4\pi\epsilon_0 r} \right) = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$$

- Similarly, we could have started with potential and derived the \vec{E} of a charged ring or disk with a simple derivative!

Finding the Electric Field from the Potential

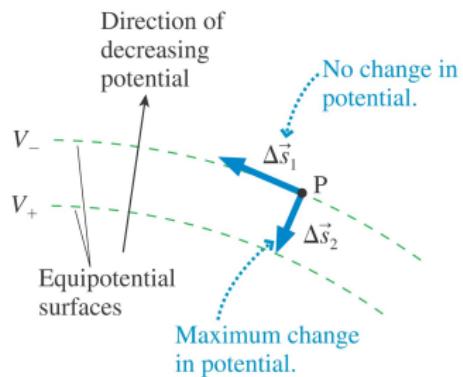
- Let's use a point charge as an example
- Choose the s axis to be in the radial direction, parallel to \vec{E} and we see

$$E_r = -\frac{dV}{dr} = -\frac{d}{dr} \left(\frac{q}{4\pi\epsilon_0 r} \right) = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$$

- Similarly, we could have started with potential and derived the \vec{E} of a charged ring or disk with a simple derivative!
- The geometric interpretation is that the \vec{E} is the slope of the V vs. s graph.

The Geometry of Potential and Field

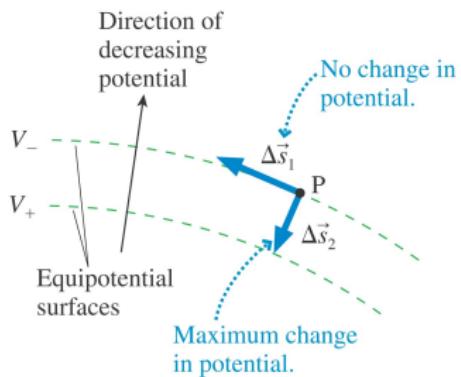
- The figure shows 2 equipotential surfaces, one at positive potential with respect to the other.



Copyright 2010 Pearson Education, Inc., publishing as Pearson Addison Wesley

The Geometry of Potential and Field

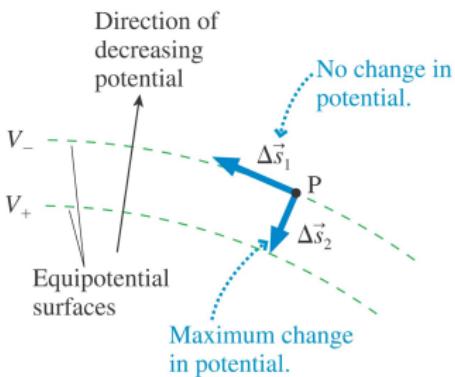
- The figure shows 2 equipotential surfaces, one at positive potential with respect to the other.
- Consider 2 displacements $\Delta\vec{s}_1$ and $\Delta\vec{s}_2$.



Copyright 2010 Pearson Education, Inc., publishing as Pearson Addison Wesley

The Geometry of Potential and Field

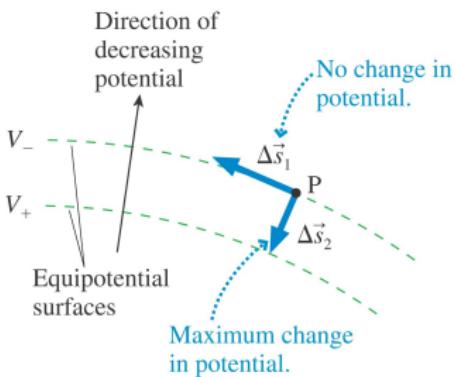
- The figure shows 2 equipotential surfaces, one at positive potential with respect to the other.
- Consider 2 displacements $\Delta\vec{s}_1$ and $\Delta\vec{s}_2$.
- For $\Delta\vec{s}_1$ the change in potential is zero...so the component of \vec{E} along that direction must be zero ($E = -dV/ds$).



Copyright 2010 Pearson Education, Inc., publishing as Pearson Addison Wesley

The Geometry of Potential and Field

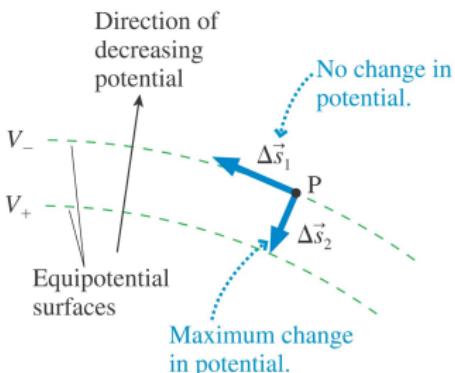
- The figure shows 2 equipotential surfaces, one at positive potential with respect to the other.
- Consider 2 displacements $\Delta\vec{s}_1$ and $\Delta\vec{s}_2$.
- For $\Delta\vec{s}_1$ the change in potential is zero...so the component of \vec{E} along that direction must be zero ($E = -dV/ds$).
- $\Delta\vec{s}_2$ is perpendicular to the surface. There is definitely a potential difference there and



$$E_{\perp} = -\frac{dV}{ds} \approx -\frac{V_+ - V_-}{\Delta s}$$

The Geometry of Potential and Field

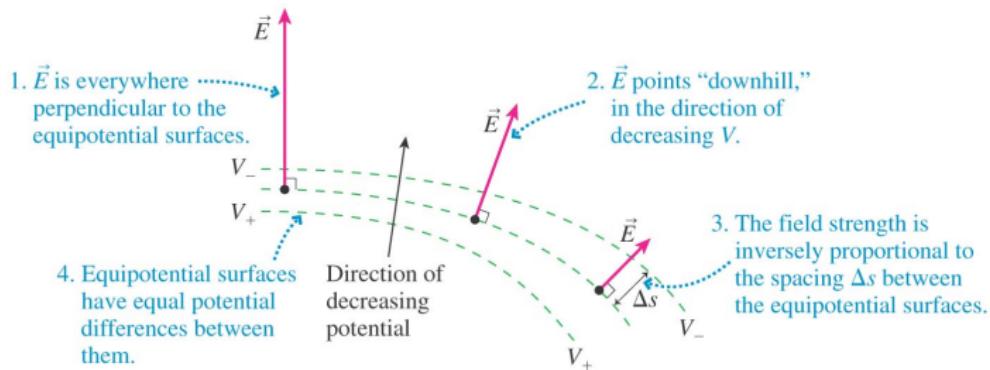
- The figure shows 2 equipotential surfaces, one at positive potential with respect to the other.
- Consider 2 displacements $\vec{\Delta s}_1$ and $\vec{\Delta s}_2$.
- For $\vec{\Delta s}_1$ the change in potential is zero...so the component of \vec{E} along that direction must be zero ($E = -dV/ds$).
- $\vec{\Delta s}_2$ is perpendicular to the surface. There is definitely a potential difference there and



$$E_{\perp} = -\frac{dV}{ds} \approx -\frac{V_+ - V_-}{\Delta s}$$

- \vec{E} is perpendicular to equipotential surfaces and points “downhill”.

The Geometry of Potential and Field



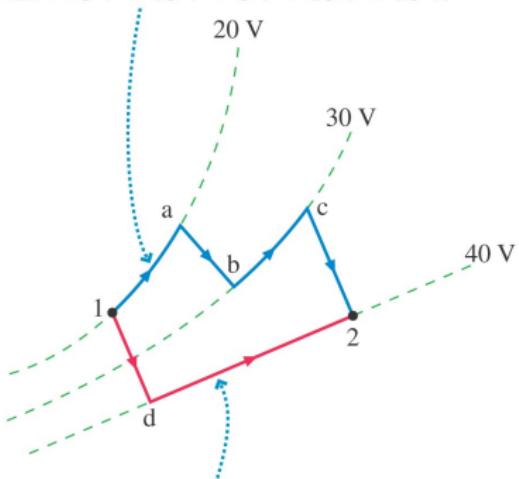
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

$$\vec{E} = E_x \hat{i} + E_y \hat{j} + E_z \hat{k} = - \left(\frac{\partial V}{\partial x} \hat{i} + \frac{\partial V}{\partial y} \hat{j} + \frac{\partial V}{\partial z} \hat{k} \right)$$

$$\vec{E} = -\nabla V$$

The Geometry of Potential and Field

The potential difference along path 1-a-b-c-2 is
 $\Delta V = 0 \text{ V} + 10 \text{ V} + 0 \text{ V} + 10 \text{ V} = 20 \text{ V}$.



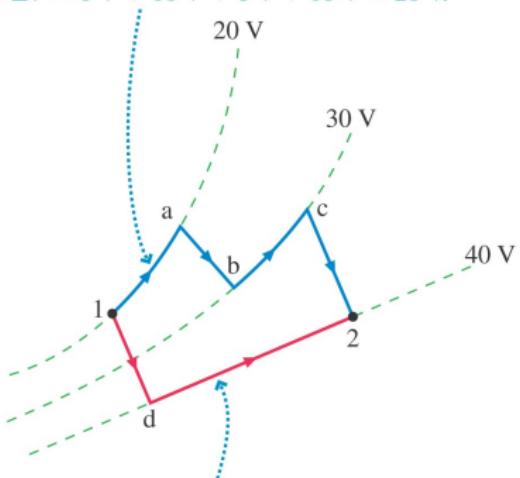
The potential difference along path 1-d-2 is $\Delta V = 20 \text{ V} + 0 \text{ V} = 20 \text{ V}$.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

- The work done moving a charge from point 1 to point 2 is independent of the path.

The Geometry of Potential and Field

The potential difference along path 1-a-b-c-2 is $\Delta V = 0 \text{ V} + 10 \text{ V} + 0 \text{ V} + 10 \text{ V} = 20 \text{ V}$.



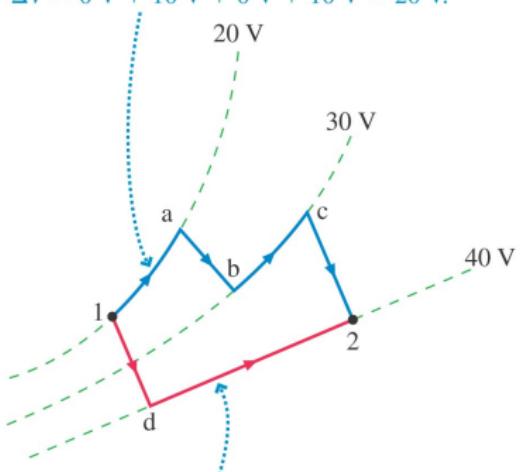
The potential difference along path 1-d-2 is $\Delta V = 20 \text{ V} + 0 \text{ V} = 20 \text{ V}$.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

- The work done moving a charge from point 1 to point 2 is independent of the path.
- Moving from point 1 to 2 on the blue path leads to a potential increase of 20V. Moving from 2 to 1 on the red path leads to a decrease of 20V.

The Geometry of Potential and Field

The potential difference along path 1-a-b-c-2 is $\Delta V = 0 \text{ V} + 10 \text{ V} + 0 \text{ V} + 10 \text{ V} = 20 \text{ V}$.



The potential difference along path 1-d-2 is $\Delta V = 20 \text{ V} + 0 \text{ V} = 20 \text{ V}$.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

- The work done moving a charge from point 1 to point 2 is independent of the path.
- Moving from point 1 to 2 on the blue path leads to a potential increase of 20V. Moving from 2 to 1 on the red path leads to a decrease of 20V.
- **Kirchhoff's Loop Law** says that the potential differences encountered while moving around a loop is zero

$$\Delta V_{loop} = \sum_i (\Delta V)_i = 0$$