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@ We have already learned that electric
field is zero everywhere inside a
conductor.
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A Conductor in Electrostatic Equilibrium (30.4)

@ We have already learned that electric
field is zero everywhere inside a
conductor.

@ That also means that the potential
difference between any two points in
a conductor is zero.

@ In electrostatic equilibrium the entire
conductor is at one potential.

Conductor
E=0

@ So, there is no E inside but there is E
outside, what happens at the
surface??

@ The surface is an equipotential
surface - E must be perpendicular to
it!
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A Conductor in Electrostatic Equilibrium

1. All excess charge =-...,
is on the surface.

2. The surface iS =wsseemm....,
an equipotential.

3. The electric field
inside is zero.

4. The interior is all
at the same potential.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.
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5. The exterior electric field is
perpendicular to the surface.

6. The surface charge density
and the electric field strength
are largest at sharp corners.
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A Conductor in Electrostatic Equilibrium

The field lines are perpendicular to
the equipotential surfaces.

oy [ sV @ The field and potential between two
conductors then needs to have a
funny shape.
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The equipotential surfaces gradually
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A Conductor in Electrostatic Equilibrium

The field lines are perpendicular to
the equipotential surfaces.

ov 50V

30V

’

| 20V
The equipotential surfaces gradually
change from the shape of one electrode
to that of the other.
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@ The field and potential between two
conductors then needs to have a
funny shape.

@ The field must be perpendicular to
each conductor surface, no matter
what shapes those conductors have.
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A Conductor in Electrostatic Equilibrium

The field lines are perpendicular to
the equipotential surfaces.

ov 50V

30V

. 20V
The eqﬁipotential surfaces gradually
change from the shape of one electrode
onbolienten .
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@ The field and potential between two
conductors then needs to have a
funny shape.

@ The field must be perpendicular to
each conductor surface, no matter
what shapes those conductors have.

@ An equipotential surface close to an
electrode must roughly match the
shape of the electrode.
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Capacitance and Capacitors (30.5)

(a)
Current

(b) F
+

FUF o=
Ur 4
]A‘Q AR AV, = AV,
AV, h
lons are
not moving L 4
Current U
The charge escalator moves charge from
one plate to the other. AV, increases as When AV, = AV, , the current stops
the charge separation increases. and the capacitor is fully charged.

@ We have been using capacitors a lot without defining capacitance
or describing how to charge-up these devices.
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Capacitance and Capacitors (30.5)

(a)
Current

(b) FF\
+

@ lons are
not moving

one plate to the other. AV, increases as When AV, = AV, , the current stops
the charge separation increases. and the capacitor is fully charged.

@ We have been using capacitors a lot without defining capacitance
or describing how to charge-up these devices.

@ A battery will create a potential difference across a capacitor
which is equal to the potential difference in the battery.
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Capacitance and Capacitors

@ We know that the potential difference in a capacitor is related to its
electric field by AV = Ed and the electric field is

_Q
_eoA
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Capacitance and Capacitors

@ We know that the potential difference in a capacitor is related to its
electric field by AV = Ed and the electric field is
_Q
N €0A
@ Combining these gives
€0A
=—AV,
Q o c
So, the charge is directly proportional to the potential difference.
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Capacitance and Capacitors

@ We know that the potential difference in a capacitor is related to its
electric field by AV = Ed and the electric field is

_9Q
N €0A
@ Combining these gives

€0A
= —AV,
Q p c
So, the charge is directly proportional to the potential difference.
@ The ratio of charge to potential difference is called capacitance:
_ Q o €0A
CEAVe T d
@ The unit of capacitance is the farad (F).

coulomb C
tfarad = 1——— = 1=
arad volt Y
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Charging a Capacitor (Example 30.6)

Example 30.6 - Charging a Capacitor

The spacing between the plates of a 1uF capacitor is 0.050mm. (a)
What is the surface area of the plates? (b) How much charge is on the
plates if this capacitor is attached to a 1.5V battery?

@ The area is dC
A= = 5.65 m?
€0
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Charging a Capacitor (Example 30.6)

Example 30.6 - Charging a Capacitor

The spacing between the plates of a 1uF capacitor is 0.050mm. (a)
What is the surface area of the plates? (b) How much charge is on the
plates if this capacitor is attached to a 1.5V battery?

@ The area is dC
A= = 5.65 m?
€0

@ The charge is

Q=CAVc=15x10°C=15uC
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Forming a Capacitor (30-22)

v

@ We have been drawing our capacitors as parallel plates since
those are the most useful ones. However, any two electrodes will
form a capacitor.

Potential difference AV
Capacitance C = Q/AV,.
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Forming a Capacitor (30-22)

v

@ We have been drawing our capacitors as parallel plates since
those are the most useful ones. However, any two electrodes will
form a capacitor.

@ The capacitance is

Potential difference AV
Capacitance C = Q/AV,.
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A Spherical Capacitor (Example 30.7)

Example 30.7

Charge —Q
Radius R,

Charge +0 A metal sphere of radius R; is inside and
' concentric with a hollow metal sphere of
radius R>. What is the capacitance of this
The tectric field poinis. - SPheerical capacitor?

from the positive outer
sphere to the negative

inner sphere.
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A Spherical Capacitor (Example 30.7)

Charge ~Q @ The potential difference between the

Radius R, .
two spheres is

Charge +Q

Radius R,

St
AV = Vf— Vi:—f Esds
Si
The electric field points
from the positive outer
sphere to the negative
inner sphere.
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A Spherical Capacitor (Example 30.7)

Charge ~Q @ The potential difference between the

Radius R, .
two spheres is

Charge +Q

Radius R,

St
AV =V - v,-:—f Esds
Si
The electric field points
from the positive outer

sphere o he negative @ The electric field contribution from the
inner sphere. .
outer sphere is zero.
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A Spherical Capacitor (Example 30.7)

Charge ~Q @ The potential difference between the

Radius R, .
two spheres is

Charge +Q

Radius R,

St
AV:Vf—Vi:—f Esds
Si
The electric field points
from the positive outer . . . .
sphere u'»’me waive @ The electric field contribution from the
inner sphere. .

outer sphere is zero.
@ Integrate on a radial line from s; = Ry to sy = R». The field
component points inward, so is negative.
el —Q Q (feds Q@ (1 1
R, \4megs 4reo Jg, S drieg \Ry Ro

f
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A Spherical Capacitor (Example 30.7)

Charge ~0 @ The potential difference between the
] two spheres is

Charge +Q
Radius R,

St
AV =Vi-V,=- fEsds
Si

The electric field points
from the positive outer

sphere 0 the negative @ The electric field contribution from the
e outer sphere is zero.
@ Integrate on a radial line from s; = Ry to sy = R». The field
component points inward, so is negative.
Rg R2
AVCZ—f (i)ds Q %Z Q (l_l)
p, \4meps? 4meq r, S2 4meo\Ri R

f

@ Capacitance is then

C =4ne ( ! i)_1
°\R, R,
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Combinations of Capacitors

The circuit symbol for a

capacitor is two parallel lines.
% —iC
H Series capacitors

. N
- L B —=C, are joined end to
—C, —C; —C, & g HALE
end in a row.

™+ [

— |
Il
I
£

Parallel capacitors are joined
top to top and bottom to bottom.

Copyright ©2008 Pearson Education, Inc., publishing as Pearson Addison-Wesey.

@ We can join capacitors together in parallel or in series.
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Combinations of Capacitors

The circuit symbol for a

capacitor is two parallel lines.
% - C
+

& Series capacitors
= - are joined end to
& =C —C; =G, i —— G JAIES
end in a row.
T —C;

Parallel capacitors are joined
top to top and bottom to bottom.

Copyright ©2008 Pearson Education, Inc., publishing as Pearson Addison-Wesey.

@ We can join capacitors together in parallel or in series.

@ In either case we will learn to replace a system of capacitors with
a single equivalent capacitor.
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Parallel Capacitors

(a) Parallel capacitors

have the same AV,..
v s B @ The two top electrodes are connected

by a conducting wire, so form a single
conductor in equilibrium.

tn + [

¢ IFC

[
/

Qi =CAVe 0, = GAVe

(b) Same AV as C, and C,

™+ [

-

C

eq

T
0=0+0,

Same total charge as C, and C,
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Parallel Capacitors

(a) Parallel capacitors

have the same AV..
s B @ The two top electrodes are connected

by a conducting wire, so form a single
conductor in equilibrium.

C, = c, @ The two top electrodes are therefore
» at the same potential. Two or more

[ capacitors connected in parallel all
0 =CAV. 0,=CAV, have the same potential difference
®)  Same AV, as C, and C, between electrodes.

tn + [

™+ [

-

C

eq

T
0=0+0,

Same total charge as C, and C,
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Parallel Capacitors

(a) Parallel capacitors

have the same AV,..
' ¢ @ The two top electrodes are connected

by a conducting wire, so form a single
conductor in equilibrium.

= C, ——=c, @ The two top electrodes are therefore

» at the same potential. Two or more

[ capacitors connected in parallel all

0,=CAV. 0,=CAV, have the same potential difference
. between electrodes.

@ The battery has to do the work to

tn + [

(b) Same AV as C, and C,

'iﬂ _: move Q = Q + Q» to the top plates.
éC So, the equivalent capacitance is
£ —C,
_ Qi+ Q
I Ceq = A—VC — C1 + CQ
0=0+0,

' !
Samestolil.change a9 ani G Just sum the capacitances!
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Series Capacitors

@ The battery sees only the top plate of
the first capacitor and the bottom
plate of the second one. It cannot add

(a) Series capacitors have the same Q.
4

AV, = QIC

Vaa o or remove charge from the others.
: C ;d::+Q No net charge
B -0 ... on this isolated

N segment

- o

N

(b) Same Q as C, 11}1(1 (0

-
£ =

AV = AV, + AV,
Same total potential difference as C, and C,
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Series Capacitors

(a) Series capacitors have the same Q.
i

AV, = QIC,
5 u |+
: 5 C ,J:: 0 No net charge
" -0 ... on this isolated
& S e come
° C;“::+Q segment
X
AV, = QIC,
(b) Same Q as C, and C,
A4
& =C.

AV = AV, + AV,
Same total potential difference as C, and C,
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@ The battery sees only the top plate of
the first capacitor and the bottom
plate of the second one. It cannot add
or remove charge from the others.

@ It will remove the same amount of
charge from the bottom of the second
capacitor as it adds to the top of the
first.
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Series Capacitors

(a) Series capacitors have the same Q.
4

AV, = QIC,
5 u |+
: C,J:: 0 No net charge
., -0 ... on this isolated
& R L come
- C;“::+Q segment
N
AV, = QIC,
(b) Same Q as C, and C,
Ad
£ ==C.

AV = AV, + AV,
Same total potential difference as C, and C,
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@ The battery sees only the top plate of
the first capacitor and the bottom
plate of the second one. It cannot add
or remove charge from the others.

@ It will remove the same amount of
charge from the bottom of the second

capacitor as it adds to the top of the
first.

@ The potential difference across both
capacitorsis AVg = AVy + AVs.
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Series Capacitors

@ The battery sees only the top plate of
the first capacitor and the bottom
plate of the second one. It cannot add

(a) Series capacitors have the same Q.
4

] ST or remove charge from the others.
i 0 e @ It will remove the same amount of
¢ {...Q. ------ R charge from the bottom of the second
- cz‘::_g capacitor as it adds to the top of the
\ first.
AV, = QIC, ) .
()  Same Qas C,and C, @ The potential difference across both
— capacitors is AVg = AVy + AVa.
- EC @ The capacitance is then
£ g w
= c - Q Q
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Series Capacitors

@ The battery sees only the top plate of
the first capacitor and the bottom
plate of the second one. It cannot add

(a) Series capacitors have the same Q.
4

) AV, =016, or remove charge from the others.
i e nercnaze @ |t will remove the same amount of
P i.._‘?. ....... R charge from the bottom of the second
- cz‘::_g capacitor as it adds to the top of the
\ first.
AV, = QIC, ) .
()  Same Qas C,and C, @ The potential difference across both
— capacitors is AVg = AVy + AVa.
- EC @ The capacitance is then
£ — w
= c — Q Q
AV, = AV, + AV, AVe  AVi+ AV
Same total potential difference as C, and C, 1 A V1 JAN v2 1 1
C Q Q C G
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The Energy Stored in a Capacitor (30.6)

@ Charging a capacitor uses energy
from the battery. Energy is
The instantaneous charge ok »
on the plates s *g. -, conserved, therefore it “goes
- somewhere.

v

The cha.rge escalator does work
dg AV to move charge dg from the
negative plate to the positive plate.
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The Energy Stored in a Capacitor (30.6)

@ Charging a capacitor uses energy
A from the battery. Energy is
Zﬁfﬁ??ﬂlﬁﬁ‘ﬁiﬁfge conserved, therefore it “goes”
somewhere.
@ As the battery uses energy, the
potential energy stored in the
capacitor increases

AV

- — du:quvzq%q

The cha.rge escalator does work
dq AV to move charge dq from the
negative plate to the positive plate.
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The Energy Stored in a Capacitor (30.6)

The instantaneous charge
on the plates is *¢q. -,

[

4L

d

The cha.rge escalator does work
dq AV to move charge dq from the
sitive plate.

Neil Alberding (SFU Physics)

@ Charging a capacitor uses energy
from the battery. Energy is
conserved, therefore it “goes”
somewhere.

@ As the battery uses energy, the
potential energy stored in the
capacitor increases

dU = dgAV = q%q

@ Integrating over all of the charging
time gives

1 Q Q2 C(AV)2
UC‘EfO a=5c="% -
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The Energy Stored in a Capacitor

@ The energy stored is proportional to the square of the potential
difference - reminds me of a spring U = %I(Ax2
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The Energy Stored in a Capacitor

@ The energy stored is proportional to the square of the potential
difference - reminds me of a spring U = %I(Ax2

@ An important feature of a capacitor is that it can be discharged
very quickly (after an arbitrarily long charge). It is a device to store
energy in a circuit. (eg. defibrillator, flashbulb)
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The Energy Stored in a Capacitor

@ The energy stored is proportional to the square of the potential
difference - reminds me of a spring U = %I(Ax2

@ An important feature of a capacitor is that it can be discharged
very quickly (after an arbitrarily long charge). It is a device to store
energy in a circuit. (eg. defibrillator, flashbulb)

@ What is the energy stored in a 2.0 uF capacitor charged to 5000
V?
AV¢)?
Ug = % — 25
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The Energy Stored in a Capacitor

@ The energy stored is proportional to the square of the potential
difference - reminds me of a spring U = %I(Ax2
@ An important feature of a capacitor is that it can be discharged
very quickly (after an arbitrarily long charge). It is a device to store
energy in a circuit. (eg. defibrillator, flashbulb)
@ What is the energy stored in a 2.0 uF capacitor charged to 5000
?
v C(AVE)?
2
@ What is the power dissipated if that energy is released in 10us?

Uc = =25J

AE
P = =25MW
At >

that's “megawatts”.
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