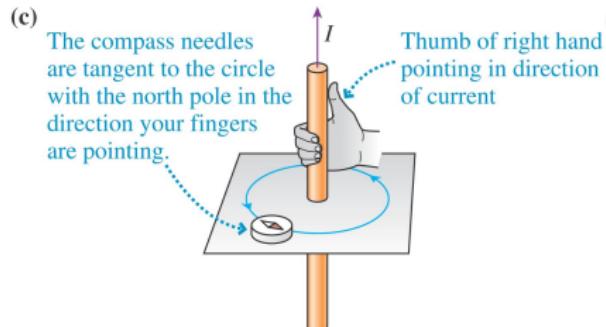
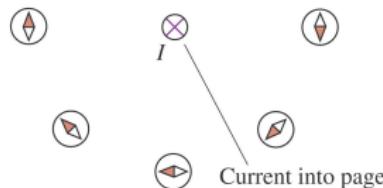


The Direction of Magnetic Field



(b)



Current into page

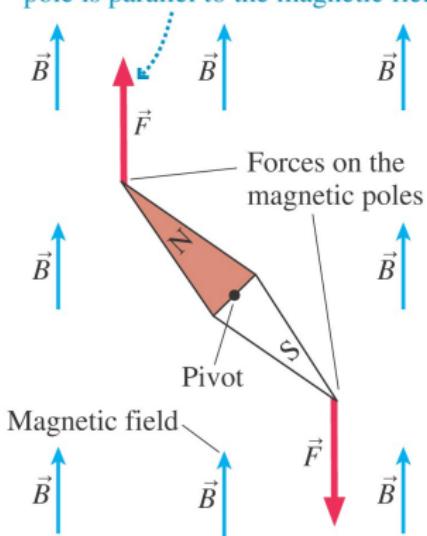
Vectors into page

Current out of page

Vectors out of page

The Magnetic Field

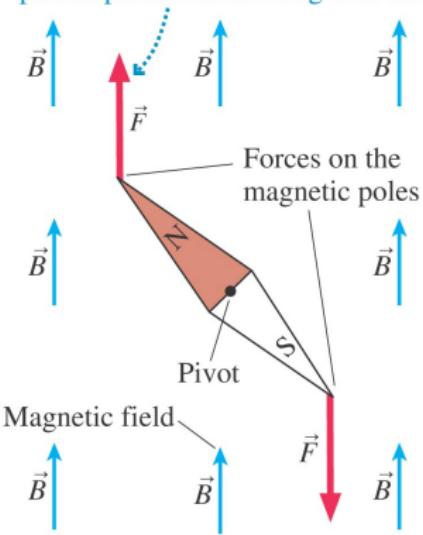
The magnetic force on the north pole is parallel to the magnetic field.



- We introduced electric field to explain-away long-range electric forces. Charges create a field throughout space with which other charges interact.

The Magnetic Field

The magnetic force on the north pole is parallel to the magnetic field.

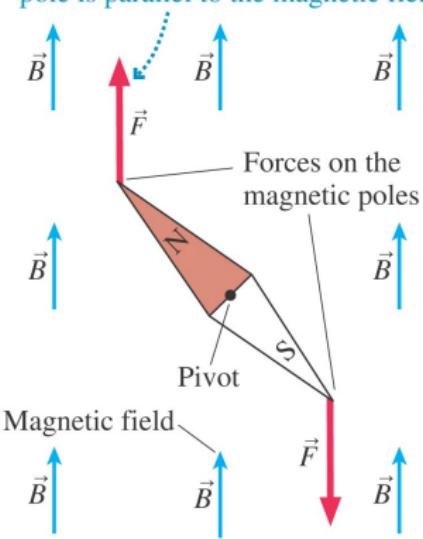


Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

- We introduced electric field to explain-away long-range electric forces. Charges create a field throughout space with which other charges interact.
- Properties of a magnetic field:

The Magnetic Field

The magnetic force on the north pole is parallel to the magnetic field.

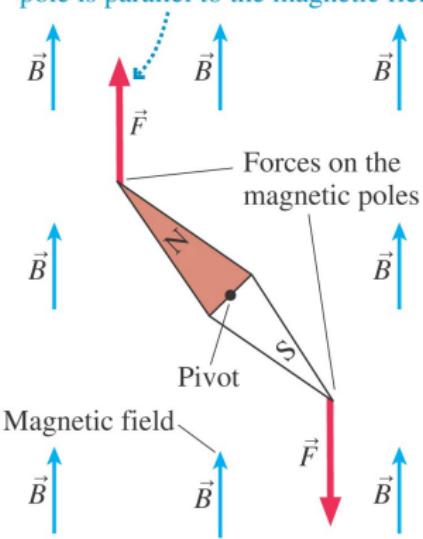


Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

- We introduced electric field to explain-away long-range electric forces. Charges create a field throughout space with which other charges interact.
- Properties of a magnetic field:
 - 1 A magnetic field is created at all points in space around a current-carrying wire.

The Magnetic Field

The magnetic force on the north pole is parallel to the magnetic field.

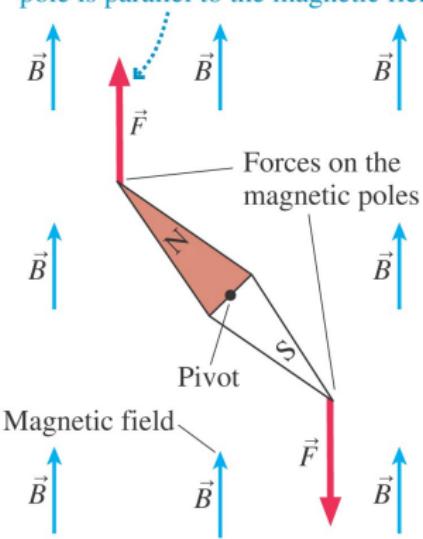


Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

- We introduced electric field to explain-away long-range electric forces. Charges create a field throughout space with which other charges interact.
- Properties of a magnetic field:
 - 1 A magnetic field is created at all points in space around a current-carrying wire.
 - 2 Like \vec{E} , \vec{B} is a vector field

The Magnetic Field

The magnetic force on the north pole is parallel to the magnetic field.



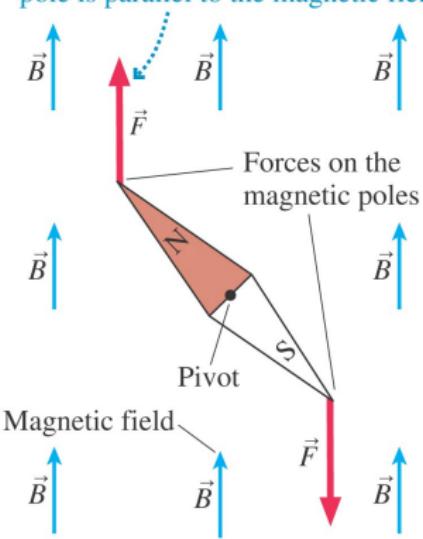
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

- We introduced electric field to explain-away long-range electric forces. Charges create a field throughout space with which other charges interact.
- Properties of a magnetic field:

- 1 A magnetic field is created at all points in space around a current-carrying wire.
- 2 Like \vec{E} , \vec{B} is a vector field
- 3 \vec{B} exerts forces on magnetic poles.
North poles point along \vec{B} .

The Magnetic Field

The magnetic force on the north pole is parallel to the magnetic field.

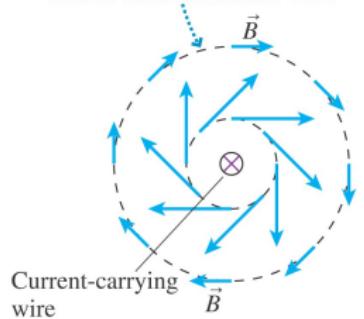


Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

- We introduced electric field to explain-away long-range electric forces. Charges create a field throughout space with which other charges interact.
- Properties of a magnetic field:
 - 1 A magnetic field is created at all points in space around a current-carrying wire.
 - 2 Like \vec{E} , \vec{B} is a vector field
 - 3 \vec{B} exerts forces on magnetic poles. North poles point along \vec{B} .
- So, a compass needle experiences a torque in a magnetic field until it is aligned with that field.

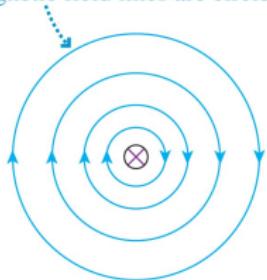
The Magnetic Field

(a) The magnetic field vectors are tangent to circles around the wire, pointing in the direction given by the right-hand rule. The field is weaker farther from the wire.



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

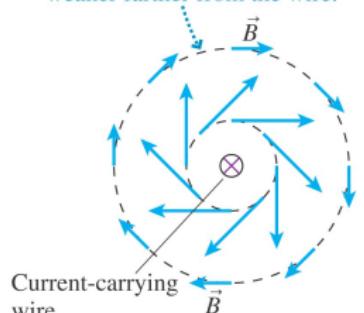
(b) Magnetic field lines are circles.



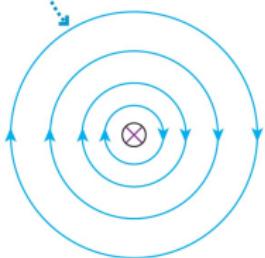
- We can represent the field by drawing field vectors. These show the direction a magnet would point at each spot. The length is the strength (see how it drops with distance).

The Magnetic Field

(a) The magnetic field vectors are tangent to circles around the wire, pointing in the direction given by the right-hand rule. The field is weaker farther from the wire.



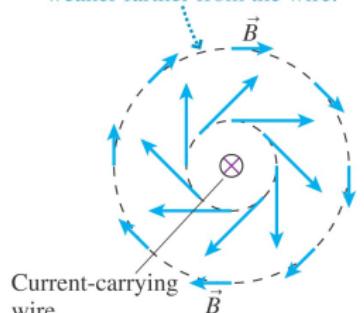
(b) Magnetic field lines are circles.



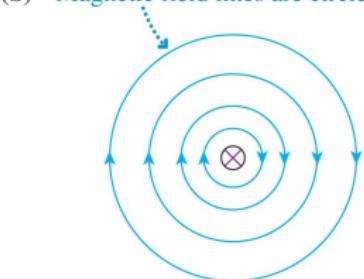
- We can represent the field by drawing field vectors. These show the direction a magnet would point at each spot. The length is the strength (see how it drops with distance).
- Another representation is with **magnetic field lines**. The field direction is tangent to a field line. The more close-packed the field lines, the stronger the field.

The Magnetic Field

(a) The magnetic field vectors are tangent to circles around the wire, pointing in the direction given by the right-hand rule. The field is weaker farther from the wire.



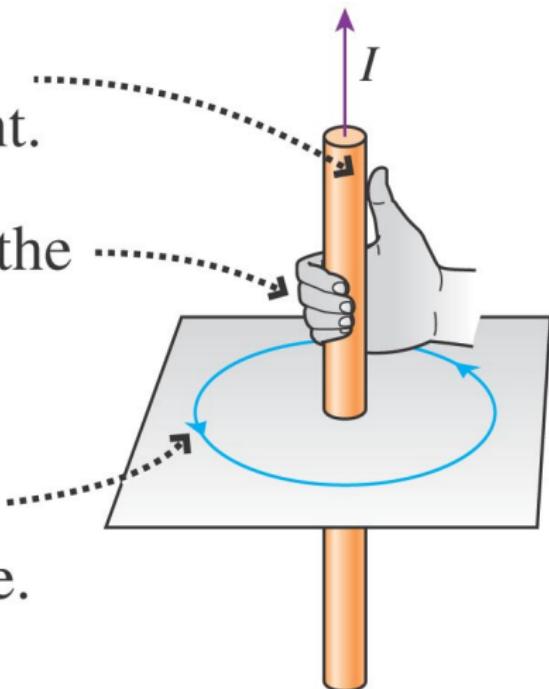
(b) Magnetic field lines are circles.



- We can represent the field by drawing field vectors. These show the direction a magnet would point at each spot. The length is the strength (see how it drops with distance).
- Another representation is with **magnetic field lines**. The field direction is tangent to a field line. The more close-packed the field lines, the stronger the field.
- Given a current in a wire, use the right-hand rule to get the direction.

The Right-Hand Rule

- 1 Point your *right* thumb in the direction of the current.
- 2 Curl your fingers around the wire to indicate a circle.
- 3 Your fingers point in the direction of the magnetic field lines around the wire.



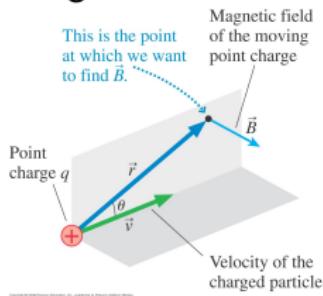
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

The Source of Magnetic Field: Moving Charges (33.3)

- Since current seems to lead to magnetic field. Let's assume that **moving charges are the source of magnetic field.**

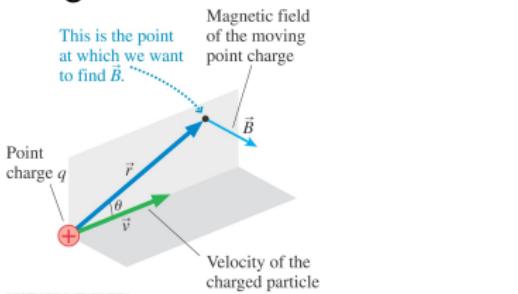
The Source of Magnetic Field: Moving Charges (33.3)

- Since current seems to lead to magnetic field. Let's assume that **moving charges are the source of magnetic field**.
- We need the equivalent of Coulomb's Law. When a charge is moving, how "big" is the magnetic field at some distance r away?



The Source of Magnetic Field: Moving Charges (33.3)

- Since current seems to lead to magnetic field. Let's assume that **moving charges are the source of magnetic field**.
- We need the equivalent of Coulomb's Law. When a charge is moving, how "big" is the magnetic field at some distance r away?



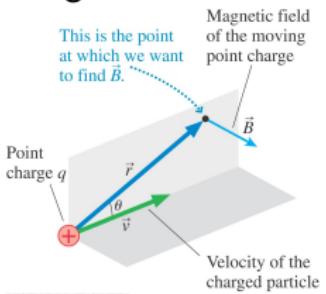
- The Biot-Savart Law is

$$|\vec{B}_{\text{point charge}}| = \frac{\mu_0}{4\pi} \frac{qv \sin \theta}{r^2}$$

The direction of the vector is given by the right-hand rule. μ_0 is the permeability constant.

The Source of Magnetic Field: Moving Charges (33.3)

- Since current seems to lead to magnetic field. Let's assume that **moving charges are the source of magnetic field**.
- We need the equivalent of Coulomb's Law. When a charge is moving, how "big" is the magnetic field at some distance r away?



- The Biot-Savart Law is

$$|\vec{B}_{\text{point charge}}| = \frac{\mu_0}{4\pi} \frac{qv \sin \theta}{r^2}$$

The direction of the vector is given by the right-hand rule. μ_0 is the permeability constant.

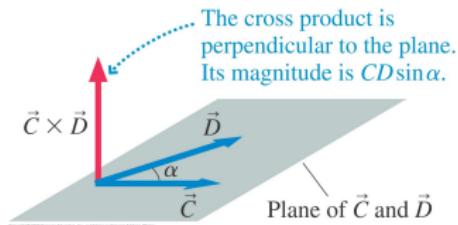
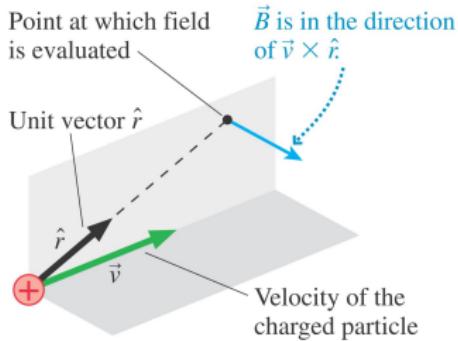
- The unit of magnetic field strength is the **Tesla**.

Superposition

- Like electric fields, magnetic fields obey the principle of superposition. If there are n moving point charges the net field is given by the **vector** sum:

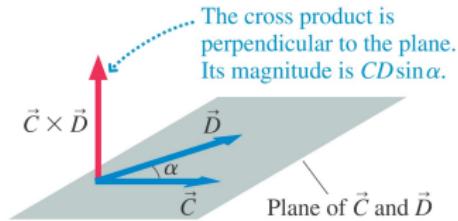
$$\vec{B}_{tot} = \vec{B}_1 + \vec{B}_2 + \cdots + \vec{B}_n$$

The Vector Cross Product and Biot-Savart

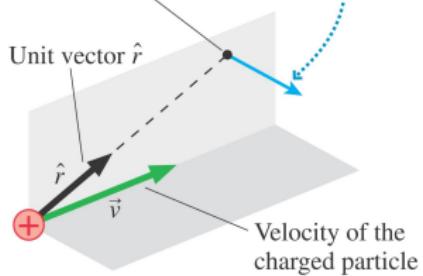


- If we want our Biot-Savart Law to have direction as well as magnitude we need again to introduce unit vector \hat{r} .

The Vector Cross Product and Biot-Savart



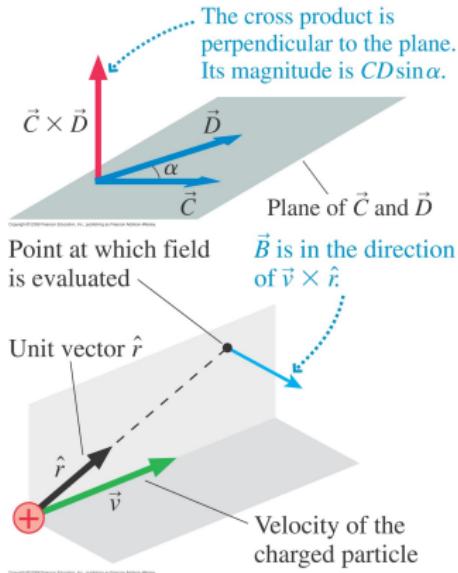
Point at which field is evaluated



- If we want our Biot-Savart Law to have direction as well as magnitude we need again to introduce unit vector \hat{r} .
- We also need a cross product:

$$\vec{B}_{\text{point charge}} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$$

The Vector Cross Product and Biot-Savart



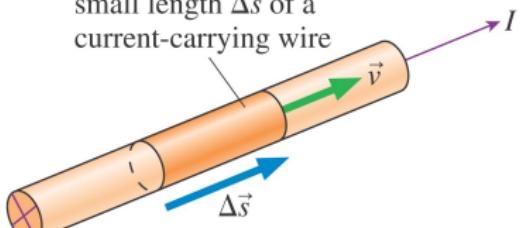
- If we want our Biot-Savart Law to have direction as well as magnitude we need again to introduce unit vector \hat{r} .
- We also need a cross product:

$$\vec{B}_{\text{point charge}} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$$

- This agrees completely with our previous Biot-Savart definition but now has the direction built-in!

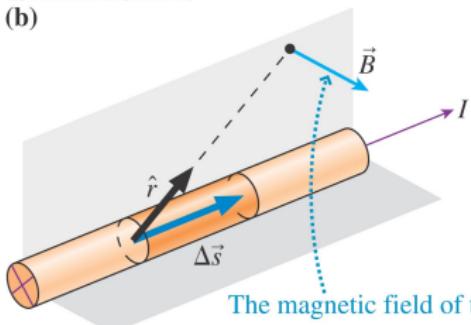
The Magnetic Field of a Current (33.4)

(a) Charge ΔQ in a small length Δs of a current-carrying wire



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

(b)



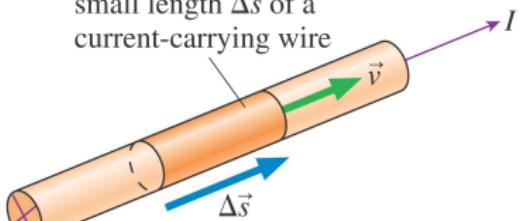
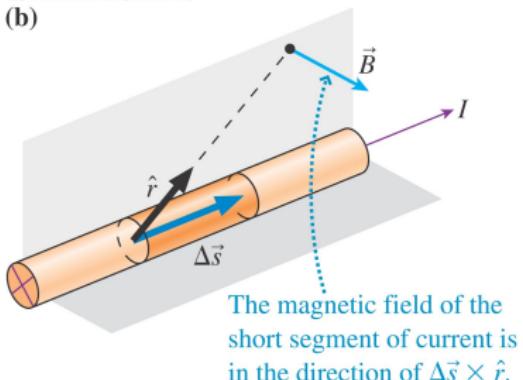
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

- Rather than a single point charge, let's look at the magnetic field from a current.

The magnetic field of the short segment of current is in the direction of $\Delta s \times \hat{r}$.

The Magnetic Field of a Current (33.4)

(a) Charge ΔQ in a small length Δs of a current-carrying wire

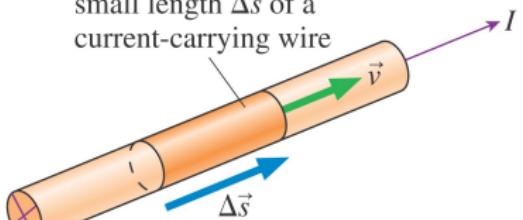
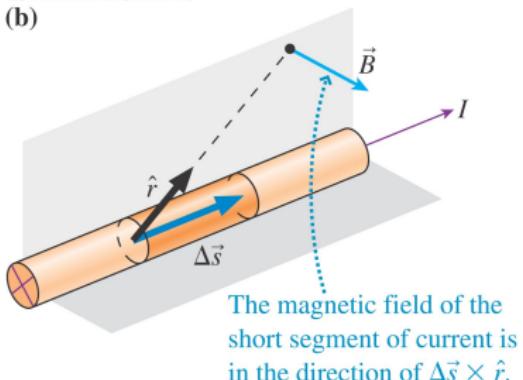


- Rather than a single point charge, let's look at the magnetic field from a current.
- Divide a current-carrying wire into segments of length $\Delta \vec{s}$ containing charge ΔQ moving at velocity \vec{v} .

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

The Magnetic Field of a Current (33.4)

(a) Charge ΔQ in a small length Δs of a current-carrying wire

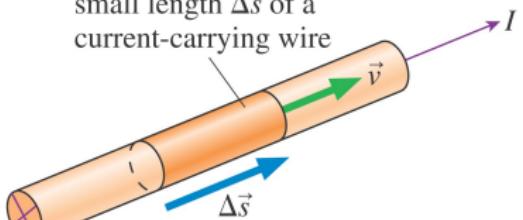
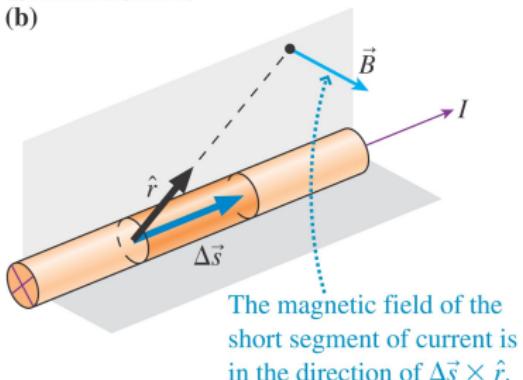


- Rather than a single point charge, let's look at the magnetic field from a current.
- Divide a current-carrying wire into segments of length $\Delta \vec{s}$ containing charge ΔQ moving at velocity \vec{v} .
- The magnetic field created by this charge is proportional to $(\Delta Q)\vec{v}$:

$$(\Delta Q)\vec{v} = \Delta Q \frac{\Delta \vec{s}}{\Delta t} = \frac{\Delta Q}{\Delta t} \Delta \vec{s} = I \Delta \vec{s}$$

The Magnetic Field of a Current (33.4)

(a) Charge ΔQ in a small length Δs of a current-carrying wire



- Rather than a single point charge, let's look at the magnetic field from a current.
- Divide a current-carrying wire into segments of length $\Delta \vec{s}$ containing charge ΔQ moving at velocity \vec{v} .
- The magnetic field created by this charge is proportional to $(\Delta Q)\vec{v}$:

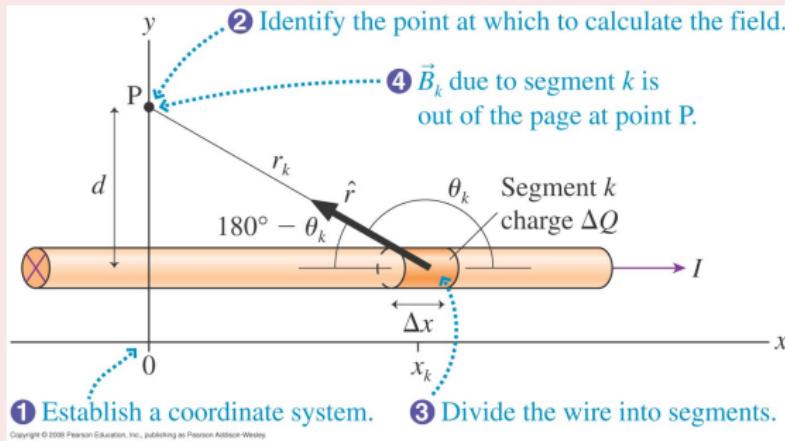
$$(\Delta Q)\vec{v} = \Delta Q \frac{\Delta \vec{s}}{\Delta t} = \frac{\Delta Q}{\Delta t} \Delta \vec{s} = I \Delta \vec{s}$$

- The Biot-Savart Law for a short segment is:

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{I \Delta \vec{s} \times \hat{r}}{r^2}$$

Example 33.3: \vec{B} of a Long Wire

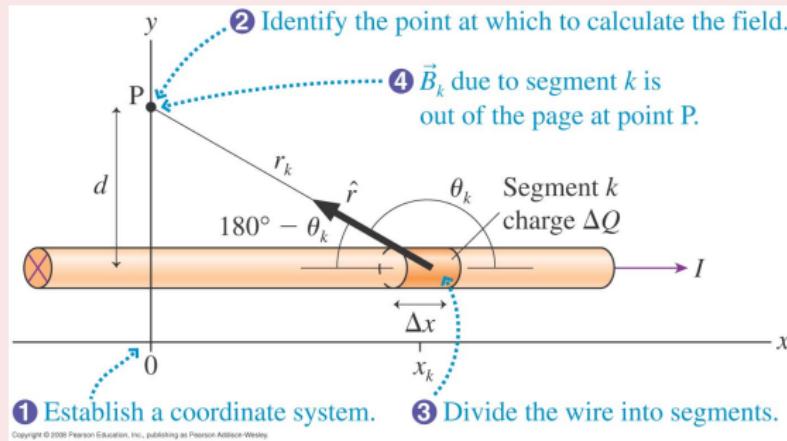
Example 33.3: \vec{B} of a Long Wire



A long straight wire carries current I in the positive x direction. Find the magnetic field at a point which is a distance d from the wire.

Example 33.3: \vec{B} of a Long Wire

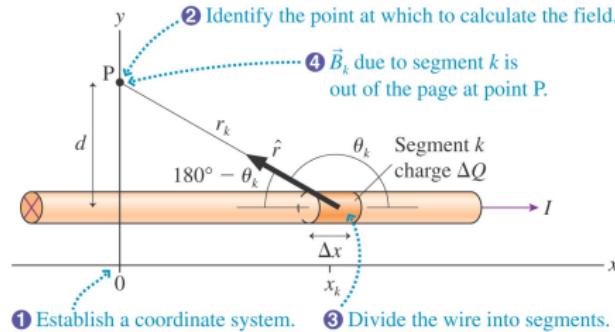
Example 33.3: \vec{B} of a Long Wire



A long straight wire carries current I in the positive x direction. Find the magnetic field at a point which is a distance d from the wire.

We know the direction of the field already by the right-hand rule. The field points along the z axis only.

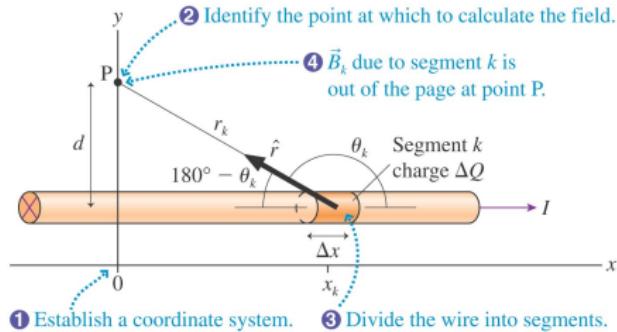
Example 33.3: \vec{B} of a Long Wire



- We can use Biot-Savart to find the $(B_k)_z$, noting that the cross product $\Delta \vec{s} \times \hat{r} = (\Delta \vec{s})(1)(\sin \theta_k)$:

$$(B_k)_z = \frac{\mu_0}{4\pi} \frac{I \Delta x \sin \theta_k}{r_k^2} = \frac{\mu_0}{4\pi} \frac{I \sin \theta_k}{x_k^2 + d^2} \Delta x$$

Example 33.3: \vec{B} of a Long Wire



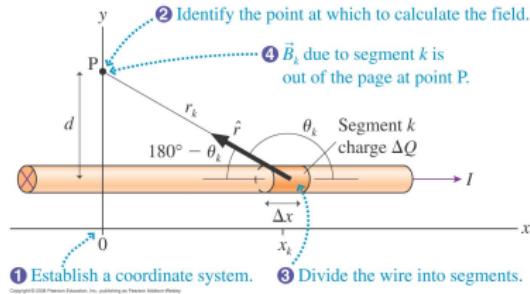
- We can use Biot-Savart to find the $(B_k)_z$, noting that the cross product $\Delta \vec{s} \times \hat{r} = (\Delta \vec{s})(1)(\sin \theta_k)$:

$$(B_k)_z = \frac{\mu_0}{4\pi} \frac{I \Delta x \sin \theta_k}{r_k^2} = \frac{\mu_0}{4\pi} \frac{I \sin \theta_k}{x_k^2 + d^2} \Delta x$$

- Also note that $\sin \theta_k$ is:

$$\sin(\theta_k) = \sin(180 - \theta_k) = \frac{d}{r_k} = \frac{d}{\sqrt{x_k^2 + d^2}}$$

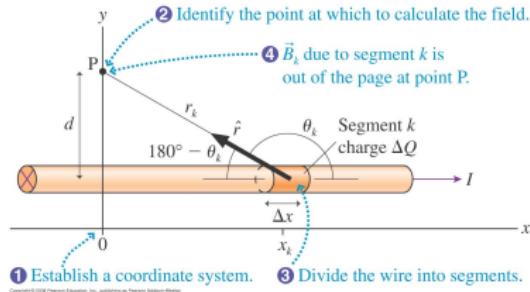
Example 33.3: \vec{B} of a Long Wire



- Substituting these back into Biot-Savart

$$B = \frac{\mu_0 I d}{4\pi} \sum_k \frac{\Delta x}{(x_k^2 + d^2)^{3/2}}$$

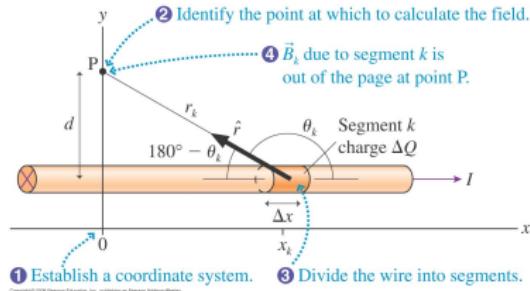
Example 33.3: \vec{B} of a Long Wire



- Substituting these back into Biot-Savart

$$B = \frac{\mu_0 I d}{4\pi} \sum_k \frac{\Delta x}{(x_k^2 + d^2)^{3/2}}$$

Example 33.3: \vec{B} of a Long Wire

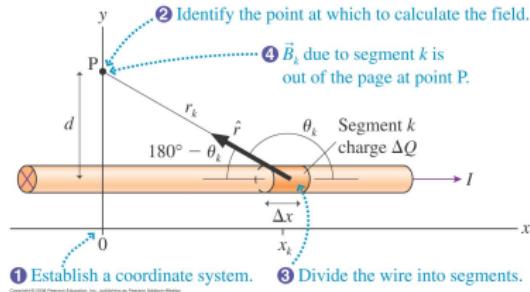


- Substituting these back into Biot-Savart

$$B = \frac{\mu_0 I d}{4\pi} \sum_k \frac{\Delta x}{(x_k^2 + d^2)^{3/2}}$$

$$B = \frac{\mu_0 I d}{4\pi} \int_{-\infty}^{\infty} \frac{dx}{(x^2 + d^2)^{3/2}}$$

Example 33.3: \vec{B} of a Long Wire



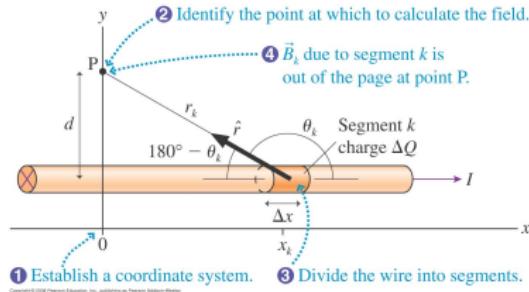
- Substituting these back into Biot-Savart

$$B = \frac{\mu_0 I d}{4\pi} \sum_k \frac{\Delta x}{(x_k^2 + d^2)^{3/2}}$$

$$B = \frac{\mu_0 I d}{4\pi} \int_{-\infty}^{\infty} \frac{dx}{(x^2 + d^2)^{3/2}}$$

$$B = \frac{\mu_0 I d}{4\pi} \frac{x}{(x^2 + d^2)^{1/2}} \Big|_{-\infty}^{\infty}$$

Example 33.3: \vec{B} of a Long Wire



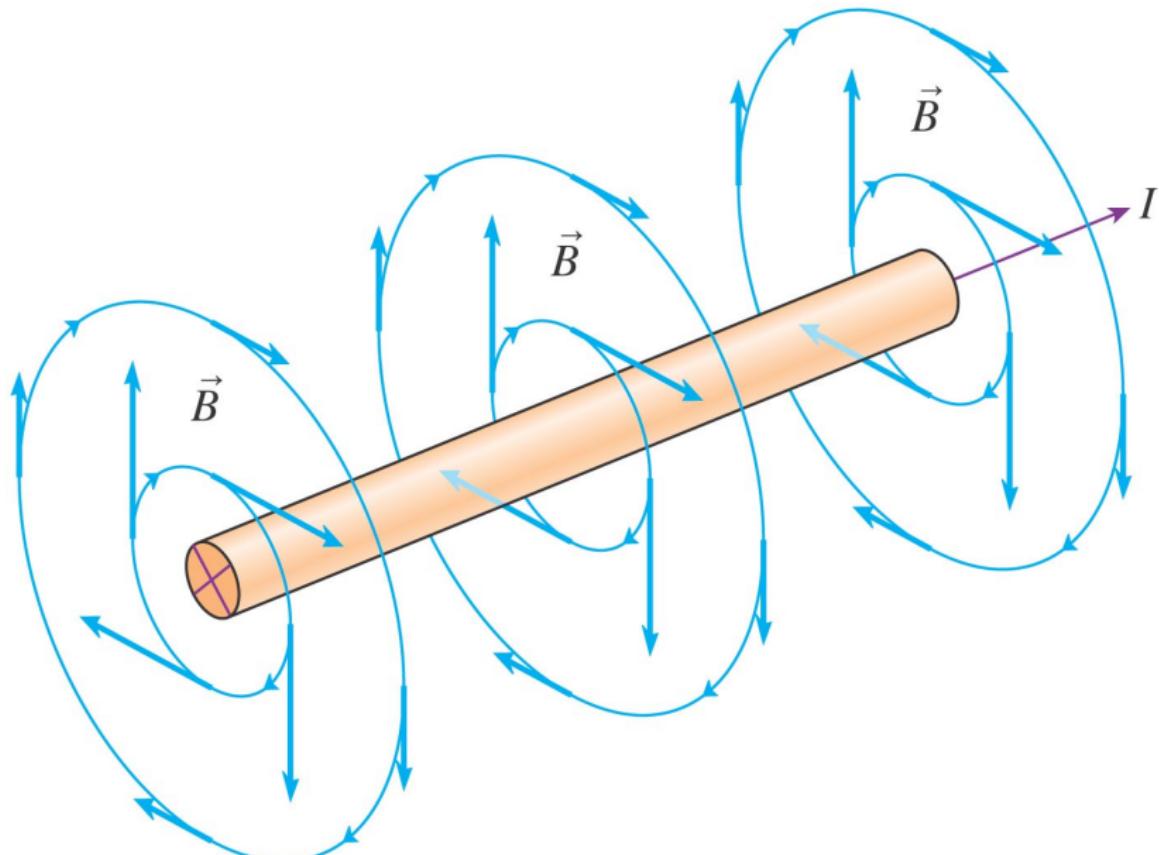
- Substituting these back into Biot-Savart

$$B = \frac{\mu_0 I d}{4\pi} \sum_k \frac{\Delta x}{(x_k^2 + d^2)^{3/2}}$$

$$B = \frac{\mu_0 I d}{4\pi} \int_{-\infty}^{\infty} \frac{dx}{(x^2 + d^2)^{3/2}}$$

$$B = \frac{\mu_0 I d}{4\pi} \frac{x}{(x^2 + d^2)^{1/2}} \Big|_{-\infty}^{\infty} = \frac{\mu_0 I}{2\pi d}$$

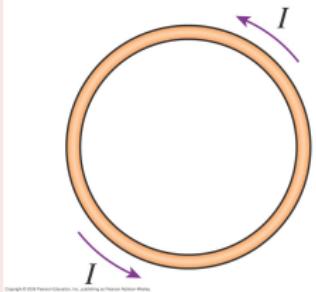
Example 33.3: \vec{B} of a Long Wire



Example 33.5: \vec{B} of a Current Loop

Example 33.5: \vec{B} of a Current Loop

(b) An ideal current loop

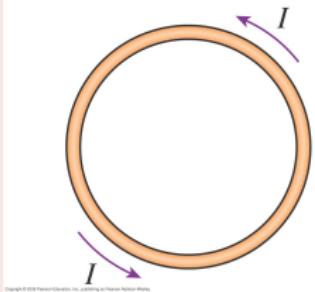


A circular loop of wire of radius R carries a current I . Find the magnitude of the field of the current loop at distance z on the axis of the loop

Example 33.5: \vec{B} of a Current Loop

Example 33.5: \vec{B} of a Current Loop

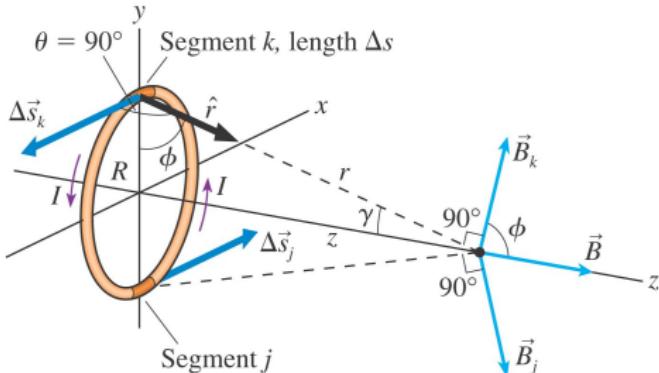
(b) An ideal current loop



A circular loop of wire of radius R carries a current I . Find the magnitude of the field of the current loop at distance z on the axis of the loop

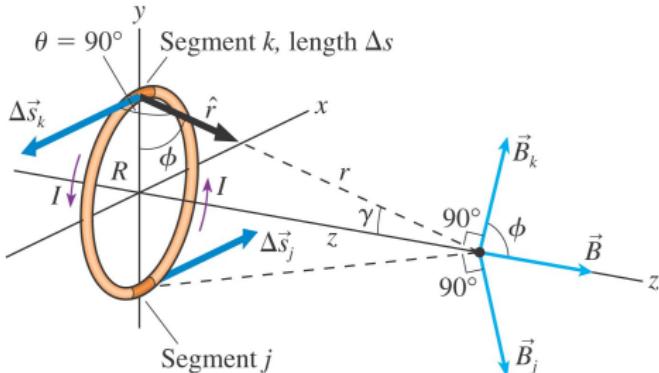
Hey, back to our favourite type of example - a ring!

Example 33.5: \vec{B} of a Current Loop



- Assume CCW current and the loop in the x – y plane. Look at the field from one small segment of loop .

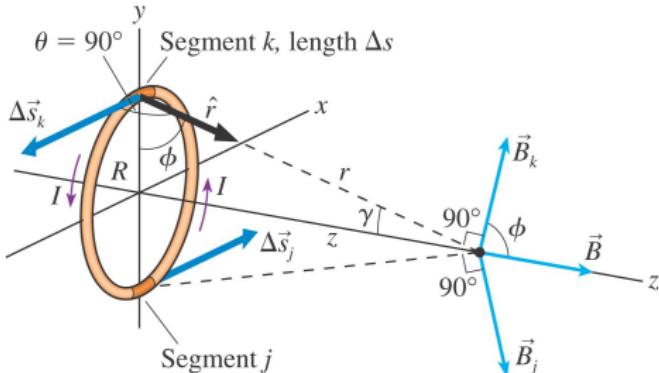
Example 33.5: \vec{B} of a Current Loop



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison Wesley.

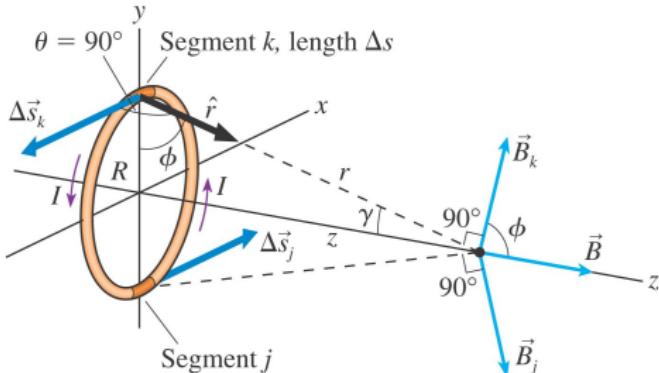
- Assume CCW current and the loop in the $x - y$ plane. Look at the field from one small segment of loop .
- Note that the segment at the top (k) has opposite current flow from the segment at the bottom (j). The direction of the field is given by $\Delta \vec{s} \times \hat{r}$.

Example 33.5: \vec{B} of a Current Loop



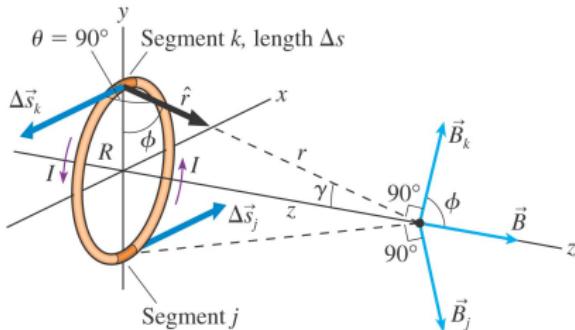
- Assume CCW current and the loop in the $x - y$ plane. Look at the field from one small segment of loop .
- Note that the segment at the top (k) has opposite current flow from the segment at the bottom (j). The direction of the field is given by $\Delta\vec{s} \times \hat{r}$.
- The y components of k and j cancel.

Example 33.5: \vec{B} of a Current Loop



- Assume CCW current and the loop in the $x - y$ plane. Look at the field from one small segment of loop .
- Note that the segment at the top (k) has opposite current flow from the segment at the bottom (j). The direction of the field is given by $\Delta \vec{s} \times \hat{r}$.
- The y components of k and j cancel.
- For every segment on the ring we can find a partner on the opposite side to cancel the y and x components.

Example 33.5: \vec{B} of a Current Loop

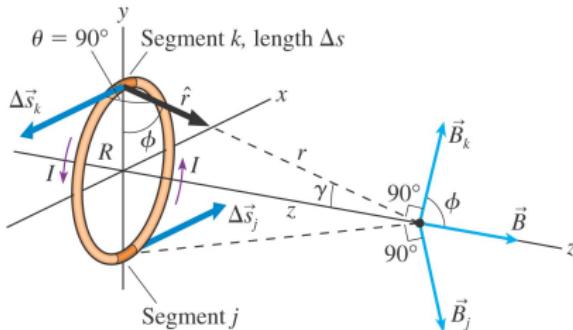


Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

- We will use the Biot-Savart Law to get the z component. Note that $\Delta\vec{s}_k \times \hat{r} = \Delta s(1) \sin 90 = \Delta s$

$$(B_k)_z = \frac{\mu_0}{4\pi} \frac{I\Delta s}{r^2} \cos \phi$$

Example 33.5: \vec{B} of a Current Loop



- We will use the Biot-Savart Law to get the z component. Note that $\Delta\vec{s}_k \times \hat{r} = \Delta s(1) \sin 90 = \Delta s$

$$(B_k)_z = \frac{\mu_0}{4\pi} \frac{I\Delta s}{r^2} \cos \phi$$

- From triangles we know that

$$\cos \phi = \frac{R}{r}, \quad r = (z^2 + R^2)^{1/2}$$

Example 33.5: \vec{B} of a Current Loop

- This gives the magnetic field for one segment as:

$$(B_k)_z = \frac{\mu_0}{4\pi} \frac{IR}{(Z^2 + R^2)^{3/2}} \Delta s$$

Example 33.5: \vec{B} of a Current Loop

- This gives the magnetic field for one segment as:

$$(B_k)_z = \frac{\mu_0}{4\pi} \frac{IR}{(Z^2 + R^2)^{3/2}} \Delta s$$

- Rings don't need integrals!

$$B_{loop} = \frac{\mu_0 IR}{4\pi(z^2 + R^2)^{3/2}} \sum_k \Delta s$$

Example 33.5: \vec{B} of a Current Loop

- This gives the magnetic field for one segment as:

$$(B_k)_z = \frac{\mu_0}{4\pi} \frac{IR}{(Z^2 + R^2)^{3/2}} \Delta s$$

- Rings don't need integrals!

$$B_{loop} = \frac{\mu_0 IR}{4\pi(z^2 + R^2)^{3/2}} \sum_k \Delta s$$

Example 33.5: \vec{B} of a Current Loop

- This gives the magnetic field for one segment as:

$$(B_k)_z = \frac{\mu_0}{4\pi} \frac{IR}{(Z^2 + R^2)^{3/2}} \Delta s$$

- Rings don't need integrals!

$$B_{loop} = \frac{\mu_0 IR}{4\pi(z^2 + R^2)^{3/2}} \sum_k \Delta s$$

$$B_{loop} = \frac{\mu_0 IR}{4\pi(z^2 + R^2)^{3/2}} \sum_k 2\pi R$$

Example 33.5: \vec{B} of a Current Loop

- This gives the magnetic field for one segment as:

$$(B_k)_z = \frac{\mu_0}{4\pi} \frac{IR}{(Z^2 + R^2)^{3/2}} \Delta s$$

- Rings don't need integrals!

$$B_{loop} = \frac{\mu_0 IR}{4\pi(z^2 + R^2)^{3/2}} \sum_k \Delta s$$

$$B_{loop} = \frac{\mu_0 IR}{4\pi(z^2 + R^2)^{3/2}} \sum_k 2\pi R$$

$$B_{loop} = \frac{\mu_0}{2} \frac{IR^2}{(z^2 + R^2)^{3/2}}$$

- We have many devices containing a coil of N loops. For $z = 0$:

$$B_{center \ of \ coil} = \frac{\mu_0 N I}{2 R}$$