
The Direction of Magnetic Field

Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 16



The Magnetic Field

We introduced electric field to
explain-away long-range electric forces.
Charges create a field throughout space
with which other charges interact.

Properties of a magnetic field:

1 A magnetic field is created at all points
in space around a current-carrying wire.

2 Like ~E, ~B is a vector field
3 ~B exerts forces on magnetic poles.

North poles point along ~B.

So, a compass needle experiences a
torque in a magnetic field until it is
aligned with that field.
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The Magnetic Field

We can represent the field by drawing field
vectors. These show the direction a magnet
would point at each spot. The length is the
strength (see how it drops with distance).

Another representation is with magnetic field
lines. The field direction is tangent to a field
line. The more close-packed the field lines,
the stronger the field.
Given a current in a wire, use the right-hand
rule to get the direction.
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The Right-Hand Rule
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The Source of Magnetic Field: Moving Charges (33.3)

Since current seems to lead to magnetic field. Let’s assume that
moving charges are the source of magnetic field.

We need the equivalent of Coulomb’s Law. When a charge is
moving, how “big” is the magnetic field at some distance r away?

The Biot-Savart Law is

|~Bpoint charge | =
µ0

4π
qv sinθ

r2

The direction of the vector is given by the right-hand rule. µ0 is the
permeability constant.
The unit of magnetic field strength is the Tesla.
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Superposition

Like electric fields, magnetic fields obey the principle of
superposition. If there are n moving point charges the net field is
given by the vector sum:

~Btot = ~B1 + ~B2 + · · ·+ ~Bn
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The Vector Cross Product and Biot-Savart

If we want our Biot-Savart Law to have
direction as well as magnitude we need
again to introduce unit vector r̂.

We also need a cross product:

~Bpoint charge =
µ0

4π
q~v × r̂

r2

This agrees completely with our previous
Biot-Savart definition but now has the
direction built-in!
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The Magnetic Field of a Current (33.4)

Rather than a single point charge,
let’s look at the magnetic field from a
current.

Divide a current-carrying wire into
segments of length ∆~s containing
charge ∆Q moving at velocity ~v.
The magnetic field created by this
charge is proportional to (∆Q)~v:

(∆Q)~v = ∆Q
∆~s
∆t

=
∆Q
∆t

∆~s = I∆~s

The Biot-Savart Law for a short
segment is:

~B =
µ0

4π
I∆~s × r̂

r2
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Example 33.3: ~B of a Long Wire

Example 33.3: ~B of a Long Wire

A long straight wire carries current I in the positive x direction. Find the
magnetic field at a point which is a distance d from the wire.

We know the direction of the field already by the right-hand rule. The
field points along the z axis only.
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Example 33.3: ~B of a Long Wire

We can use Biot-Savart to find the (Bk )z , noting that the cross
product ∆~s × r̂ = (∆~s)(1)(sinθk ):

(Bk )z =
µ0

4π
I∆x sinθk

r2
k

=
µ0

4π
I sinθk

x2
k + d2

∆x

Also note that sinθk is:

sin(θk ) = sin(180 − θk ) =
d
rk

=
d√

x2
k + d2
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Example 33.3: ~B of a Long Wire

Substituting these back into Biot-Savart

B =
µ0Id
4π

∑
k

∆x
(x2

k + d2)3/2

B =
µ0Id
4π

∫
∞

−∞

dx
(x2 + d2)3/2

B =
µ0Id
4π

x
(x2 + d2)1/2

∣∣∣∣∣∣∞
−∞

=
µ0

2π
I
d
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Example 33.3: ~B of a Long Wire

Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 12 / 16



Example 33.5: ~B of a Current Loop

Example 33.5: ~B of a Current Loop

A circular loop of wire of radius R carries a current I. Find the
magnitude of the field of the current loop at distance z on the axis of
the loop

Hey, back to our favourite type of example - a ring!
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Example 33.5: ~B of a Current Loop

Assume CCW current and the loop in the x − y plane. Look at the
field from one small segment of loop .

Note that the segment at the top (k ) has opposite current flow
from the segment at the bottom (j). The direction of the field is
given by ∆~s × r̂.
The y components of k and j cancel.
For every segment on the ring we can find a partner on the
opposite side to cancel the y and x components.
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Example 33.5: ~B of a Current Loop

We will use the Biot-Savart Law to get the z component. Note that
∆~sk × r̂ = ∆s(1) sin 90 = ∆s

(Bk )z =
µ0

4π
I∆s
r2 cosφ

From triangles we know that

cosφ =
R
r
, r = (z2 + R2)1/2
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Example 33.5: ~B of a Current Loop

This gives the magnetic field for one segment as:

(Bk )z =
µ0

4π
IR

(Z2 + R2)3/2 ∆s

Rings don’t need integrals!

Bloop =
µ0IR

4π(z2 + R2)3/2

∑
k

∆s

Bloop =
µ0IR

4π(z2 + R2)3/2

∑
k

2πR

Bloop =
µ0

2
IR2

(z2 + R2)3/2

We have many devices containing a coil of N loops. For z = 0:

Bcenter of coil =
µ0

2
NI
R
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