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Magnetic Properties of Matter

Magnetic moment due to the
electron’s orbital motion

.y @ Now it is time to use what we have
learned to explain the properties of
! permanent magnets.

@ The orbital motion of atomic electrons

resembles a current loop! Apparently
every little atom is an electromagnet!

Electron

@ However, most atoms have many electrons with some moving
clockwise and some counter-clockwise. So, the net magnetic
moment is close to zero.

@ In 1922 it was discovered that electrons themselves have an
intrinsic magnetic moment called spin. Each electron is really a
microscopic bar magnet.

@ In most substances these little bar magnets are randomly oriented
with respect to each other.

Neil Alberding (SFU Physics) Spring 2010 1/17



Spin and Ferromagnetism

The atomic magnetic moments due to
unpaired spins point in random directions.
The sample has no net magnetic moment.

Neil Alberding (SFU Physics)
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The atomic magnetic moments are
aligned. The sample has north and
south magnetic poles.
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Induced Magnetic Dipoles

Magnetic domains

L~

Magnetic moment of the domain

Neil Alberding (SFU Physics)

@ lron is a magnetic material but not all
iron acts like a magnet. Magnetic
domains form inside the iron.
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Induced Magnetic Dipoles

Magnetic domains

@ lron is a magnetic material but not all
iron acts like a magnet. Magnetic
domains form inside the iron.

\ @ Each domain (0.1mm) is a strong

magnet but they are randomized with
respect to each other.

L~

Magnetic moment of the domain
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Induced Magnetic Dipoles

The magnetic domains align with
the solenoid’s magnetic field.

Ferromagnetic material

@ We can line-up the domains using an
The induced magnetic dipole has eIeCtromagnet Thls IS an induced
north and south mugnelic.p.oles. magnetic dlp0|e

The attractive force between the
opposite poles pulls the ferromagnetic
material toward the solcn( d.

(Copyright © 2008 Pearson Education, inc. publishing as Pearson Addison- Wesley.
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Induced Magnetic Dipoles

The magnetic domains align with
the solenoid’s magnetic field.

Ferromagnetic material

@ We can line-up the domains using an
The induced magnetic dipole has eIeCtromagnet Thls IS an induced
north and south mugnelic.p.oles. magnetic dlp0|e

@ We have made a chunk of iron into a
permanent magnet.

The attractive force between the
opposite poles pulls the ferromagnetic
material toward the solenoid.

(Copyright © 2008 Pearson Education, inc. publishing as Pearson Addison- Wesley.
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Chapter 34: Electromagnetic Induction

@ We are done with Chapter 33 - time to move on to electromagnetic
induction.
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Chapter 34: Electromagnetic Induction

@ We are done with Chapter 33 - time to move on to electromagnetic
induction.

@ We have seen that moving charges (currents) induce a magnetic
field. It is natural to wonder if you can use a magnetic field to
induce a current.

@ In terms of practical impact, the discovery of how to do this must
be highly ranked in terms of the great discoveries of the 19th
century.

@ The age of electricity depends on induced currents. Further,
devices we use every day (eg. magnetic storage) are not possible
without it.

@ Worth spending our last couple of classes on...

Neil Alberding (SFU Physics) Spring 2010 5/17



Faraday’s Discovery

Closing the switch ... causes a momentary
in the left circuit . . . current in the right circuit.

Current meter

@ Faraday set up the experiment on the left.

Iron ring

No current flows while
the switch stays closed.

Switch

Opening the switch ... causes a momentary
in the left circuit . . . current in the opposite

direction.

‘Copyright ©2008 Pearson Education, Inc. publshing as Pearson Addison-Wesley.
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Closing the switch ... causes a momentary
in the left circuit . .. current in the right circuit.
I' Current meter
K “a .
. U ;@-- @ Faraday set up the experiment on the left.
Switch

= @ He was attempting to use the left-most
Iron ing circuit to magnetize the iron ring, which
No current flows while he thought would induce a current on the
b right-most coil. It didn’t work.

0

D

2

o1

Switch

Opening the switch ... causes a momentary
in the left circuit . . . current in the opposite
E direction.
0
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o 2;
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Faraday’s Discovery

Closing the switch ... causes a momentary
in lh:c left circuit . . . current in the right circuit.
I' Current meter
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L) @ Faraday set up the experiment on the left.
ety y setup the &xp
5T @ He was attempting to use the left-most
Tron ring circuit to magnetize the iron ring, which
No current flows while he thought would induce a current on the
i i right-most coil. It didn’t work.
0 .
1L @ However, he noticed that he got a small
+ e

Switch

current just at the moment he either
turned the circuit on or off. Apparently
P —— the change in magnetic field induced the
in l!:m left circuit...  current in the opposite current.

direction.
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Faraday’s Discovery

Closing the switch ... causes a momentary
in lh:c left circuit . . . current in the right circuit.
I' Current meter
Mo
L&) @ Faraday set up the experiment on the left.
ety y setup the &xp
5T @ He was attempting to use the left-most
Tron ring circuit to magnetize the iron ring, which
e — he thought would induce a current on the
i i right-most coil. It didn’t work.
0 .
1L @ However, he noticed that he got a small
+ re

Switch

current just at the moment he either
turned the circuit on or off. Apparently
the change in magnetic field induced the

Opening the switch ... causes a momentary

in l!:c left circuit . . . t]llllltlfll::,::l the opposite Current
QOD @ He set up a series of experiments to test
f/ thIS

‘Copyright ©2008 Pearson Education, Inc. publshing as Pearson Addison-Wesley.

Neil Alberding (SFU Physics) Spring 2010 6/17



Faraday’s Discovery
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Faraday’s Discovery

Push or pull magnet.
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Faraday’s Discovery

Push or pull coil.
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Faraday’s Law

@ So, Faraday discovered that there is only current in the coil in the
magnetic field through the coil is changing.
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or changing direction or strength. The change is the important
thing.
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Faraday’s Law

@ So, Faraday discovered that there is only current in the coil in the
magnetic field through the coil is changing.

@ |t doesn’t matter whether the change is “turning on” or “turning off”
or changing direction or strength. The change is the important
thing.

@ We call this an induced current

Neil Alberding (SFU Physics) Spring 2010 10/17



Motional EMF

@ An induced current can be created by

B into page X X % B

X ¥ %

X X %

::> X XV X

X X X

X X X
Charge carriers in the wire experience an The charge separation creates an electric field in
upward force of magnitude Fy, = gvB. Being the conductor. E increases as more charge flows.

free 1o move, positive charges flow upward
(or, if you prefer, negative charges downward).

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

eil Alberding (SFU Physics)

X X B
X X
% 2%
XV x
X X
X X

The charge flow continues until the downward
electric force Fy. is large enough to balance the
upward magnetic force .. Then the net force
on a charge is zero and the current ceases.
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Motional EMF

@ An induced current can be created by

@ changing the size or orientation of a circuit in a stationary magnetic
field

X éinmpage X X X B X x B
X X X ol
X X X X
l,: X XV X XV X
X X X x X
X % X b

carriers in the wire experience an The charge separation creates an electric field in e flow continues until the downward
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Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

il Alberding (SFU Physics) Spring 2010 11/17



Motional EMF

@ An induced current can be created by

@ changing the size or orientation of a circuit in a stationary magnetic
field
@ changing the magnetic field through a stationary cicuit

X X % Binto page B b3 x x B

X X X X X X

X X X X X X
1,0 —> —> =

X XV X X XV X

X X X X3 x %

X X X X X

arge carriers in the wire experience an ric field in e flow continues until the downward
upward force of magnitude Fy, = gvB. Being the conductor. E increases as more flows. e . is large enough to balance the
i flow upward netic force /. Then the net force

(or, if you prefer, negativ rges downward) on a cha s zero and the current ceases.
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Motional EMF

@ An induced current can be created by
@ changing the size or orientation of a circuit in a stationary magnetic
field
@ changing the magnetic field through a stationary cicuit
@ Consider moving a conductor of length L through a magnetic field
B at velocity V.

X X X Binto page X x x B X B
X X X X X X X
X,"‘ X X X X X X
g% — —> — —> o
4 X X X X X X X
X X X X X X X
Charge carriers in the wire experience an The charge separation creates an electric field in The charge flow continues until the downward
upward force of magnitude F, = qvB. Being the conductor. E increases as more charge flows. electric force £, is large enough to balance the

free to move, positive cha
(or, if you prefer, negative ¢

ow upward upward

tic force ;. Then the net force
es downward). on a charge is zero and the current ceases.
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Motional EMF

@ An induced current can be created by
@ changing the size or orientation of a circuit in a stationary magnetic
field
@ changing the magnetic field through a stationary cicuit
@ Consider moving a conductor of length L through a magnetic field
B at velocity V.

N -

@ The force on a charge inside is F= qvxB

S

into page

e X S X X

L

Charg

arriers in the wire experience an The charge separation creates an electric field in Tow continues until the downward
upward force of magnitude F,, = gvB. Being the conductor. E increases as more charge flows. e F, is large enough to balance the
free to move, positive charges flow upward netic force F,. Then the net force
(or, if you prefer, negative charges downward). on a charge is zero and the current ceases.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.
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Motional EMF

X X Binto page X x X B B
X X X
X X X
::> X XV x
X X X
X X X

riers in the wire experience an The charge sep:
upward force of magnitude
free to move, positive ch;

ation creates an ele field in

flow continues until the downward
w = qvB. Being the conductor. E increases as more charge flows. ¢ F. is large enough to balance the
s flow upward tic force Fy;. Then the net force
(or, if you prefer, negative charges downward). on a charge is zero and the current ceases.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

@ The force on the charges cause positive charges to move to the
top and a potential difference to exist between top and bottom.
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Motional EMF

X Binto page X x B X X X B
X X X X X X
X X X X X X
V X ::> X X :> X XV %
X X X X x %
X X X X X X

»w continues until the downward

fers in the wire experience an The charge separation creates an electric field in v
a Fi i ugh to balance the

= qvB. Being the conductor. E increases as more charge flows.

low upward upward magnetic u- Then the net force
ges downward). on a charge is zero and the current ceases.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

@ The force on the charges cause positive charges to move to the
top and a potential difference to exist between top and bottom.

@ They stop accumulating at the top when the electric repulsive
forces balance the magnetic force pushing the charges.
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Motional EMF

into page

S

D

o

X X XgxX X X

The charge separation creates an electric field in
ree of magnitude Fy, = gvB. Being the conductor. E increases as more charge flows.
free 1o move, positive charges flow upward

(or, if you prefer,

ative charges downward). on a charge is zero and the current ceases.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

@ The force on the charges cause positive charges to move to the
top and a potential difference to exist between top and bottom.

@ They stop accumulating at the top when the electric repulsive
forces balance the magnetic force pushing the charges.

@ The potential difference is

t t
AV = Viop — Vottom = —j(; Eydy = —L (-vB)dy = vLB
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Motional EMF

(a) Magnetic forces separate the charges and
cause a potential difference between the
ends. This is a motional emf.

v

1 x [FF8 x x5 ¢
X X x
X o x x
E| —— |av=un
X XV X
X X x
od x [N x x

Electric field
inside the moving
- conductor
(b) Chemical reactions separate the charges
and cause a potential difference between
the ends. This is a chemical emf.

CE 5

+

e

AY,

Electric field
i

side the battery

Neil Alberding (SFU Physics)

@ For a battery we use a charge escalator

model for chemical emf
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Motional EMF

(a) Magnetic forces separate the charges and
cause a potential difference between the
ends. This is a motional emf.

v

19 x x XB ¢
A x @ For a battery we use a charge escalator
b | AV =B .
* i model for chemical emf
ol 4 x x| @ Now we can also generate a potential
Blecvieield difference from mechanical energy -
conductor motional emf

(b) Chemical reactions separate the charges

e poen e e @ The motional emf created by a conductor of
length L moving with velocity v
perpendicular to a magnetic field B is

AV E=VvLB

Electric field
inside the battery

Neil Alberding (SFU Physics) Spring 2010 13/17



Induced Current in a Circuit

1. The charge carriers in the wire @ Now we should include that moving
are pushed upward by the conductor in a circuit!
magnetic force. | Positive end
K of wire

"“.,uj_ ._Moving wire
X X X

X X X X X
X[ x X X X X X X
I
X x X X X X X X
f—- 1 l

X X X X X X X
X X X X X X X
X X X X X X

AN
Conducting rail. Fixed .  Negative end
to table and doesn’t move. % of wire

2. The charge carriers flow
around the conducting loop
as an induced current.
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@ Now we should include that moving

1. The charge carriers in the wire

arequstad g (e conductor in a circuit!
magnetic force. Posit.ive end ’
N, b @ If we hook-up a conducting rail we

. s+ 4 ~Moving wire .
X X X x_ x d % x can get a current flowing through the
X ;< X X X circuit.
XX X X X i
X X X X X X X
Xl X X X X X X
X X/ X X ;.".“_.__‘ X X X

Conducting rail. Fixed .  Negative end
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Induced Current in a Circuit

1. The charge carriers in the wire
are pushed upward by the

magnetic force. | Positive end

of wire

Moving wire

XX X X i  x g><

XE[® X = X X X

1

Xl x x XX X
f—- 1/ l

xg|x X X X X X

xXP|lx x X B X =

XXX X Xl X XX
Conducting rail. Fixed *. Negative end

to table and doesn’t move.

~  of wire

2. The charge carriers flow
around the conducting loop
as an induced current.

Neil Alberding (SFU Physics)

Now we should include that moving
conductor in a circuit!

If we hook-up a conducting rail we
can get a current flowing through the
circuit.

The current induced in the circuit of
resistance R is given by Ohm’s Law
as

& _vB

I=8="R

(induced by magnetic forces on
moving charges - charges moving left
to right)

Spring 2010 14 /17



Induced Current in a Circuit

The induced current flows
through the moving wire.

X 0 X @ We assumed the conductor was moving
X x x x gx x x x at constant velocity. However, there is a
R e force opposing the motion!

X X X Xf[x xix X

X ><>< X XX X iX X

X ><;:>< X XHEX X :iX X

The magn'etic force on

the current-carrying

wire is opposite the motion.
A pulling force to the right must
balance the magnetic force to keep
the wire moving at constant speed.

is f es work on the wire.
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Induced Current in a Circuit

The induced current flows
through the moving wire.

X X XX @ We assumed the conductor was moving
XX R X X x at constant velocity. However, there is a
CF a—ll— | force opposing the motion!
X XX XX X3 X X
v oxin o x wlllx xix x @ As the conductor moves through the
T R TR magnetic field the charges inside are
Eéiﬁﬁﬁifffiigﬂii moved by the field, creating a current.
TARSTECUOOSE MO, However, that current is now a flow of
e el charges from bottom to top in a magnetic
the wire moving at constant speed. f|e|d ' |

This force does work on the wire.
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Induced Current in a Circuit

The induced current flows

- =2 .
g RS @ Now we do another qv x B with the

X X X XIXEX X X X d . N .

X x x x ulllx x x x irection of v being along the conductor.
x x % x Afflx x x x The force works against the motion.

x F‘““Q..:“; x x|l|x ><'?§<Fp"><ll ¥

X ><>< X XX X iX X

X ><;:>< X XHEX X iX X

The magn'etic force on

the current-carrying

wire is opposite the motion.
A pulling force to the right must
balance the magnetic force to keep
the wire moving at constant speed.

is f es work on the wire.
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Induced Current in a Circuit

The induced current flows

- S =2 .
g RS @ Now we do another qv x B with the

X X X Xi XX X X X

X x x x ulllx x x x direction of V being along the conductor.
x x x x sl x| The force works against the motion.

x Fm ESHAITE @ If you reverse the direction (turn your pull
alat ool el Sallie into a push) then the new magnetic force
e Mllem ! b also turns around. It always is opposite to

The magnetic force on

it the motion and has magnitude

wire is opposite the motion.

A pulling force to the right must

balance the magnetic force to keep VIB vL2 82
the wire moving at constant speed. — — — —
- Thls force _gf)esbwf(Jrk on the wire. Fpu” Fmag ILB ( R ) LB R
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Energy Considerations

@ Of course, to keep the conductor moving we have to supply
energy. How much?
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Energy Considerations

@ Of course, to keep the conductor moving we have to supply
energy. How much?

@ Let’s do it in terms of power. The power exerted by a force pushing
or pulling an object with velocity v is P = Fv, so the power is
v2L2B?
R

Pinput = Fpunv =
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Energy Considerations

@ Of course, to keep the conductor moving we have to supply
energy. How much?

@ Let’s do it in terms of power. The power exerted by a force pushing
or pulling an object with velocity v is P = Fv, so the power is

v2L2B?
R

@ How much energy is dissipated by the circuit?

Pinput = Fpunv =

v2L2B?
P dissipated — I2R = R
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Energy Considerations

@ Of course, to keep the conductor moving we have to supply
energy. How much?

@ Let’s do it in terms of power. The power exerted by a force pushing
or pulling an object with velocity v is P = Fv, so the power is
v2L2B?
R

@ How much energy is dissipated by the circuit?

Pinput = Fpunv =

V2L252
R

2
P dissipated — IFR =

@ Heyyyyy, those are the same! Hmmmm, | guess energy is
conserved or something...
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