A Model of Conduction

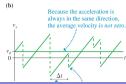
• Suppose an electron just had a collision with an ion and has rebounded with velocity \vec{v}_0 . The acceleration of the electron between collisions is

 $a_x = \frac{F}{m} = \frac{eE}{m}$

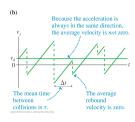
 This causes the x-component of the electron velocity to increase linearly in time

$$v_x = v_{0x} + a_x \Delta t = v_{0x} + \frac{eE}{m} \Delta t$$

- Each collision transfers kinetic energy, heating the metal.
- ullet This accelerating and colliding leads to the non-zero average velocity v_d



A Model of Conduction



 The average speed at which electrons are pushed along by the electric field is

$$v_d = \frac{e\tau}{m}E$$

where τ is the mean time between collisions. It depends on the metal's temperature but not on E.

Substituting into our expression for electron current gives

$$i_e = n_e A v_d = \frac{n_e e \tau A}{m} E$$

Current and Current Density (31.3)

- Our understanding of current at the macroscopic level predates our understanding at the microscopic level.
- So far we have been discussing electron current instead of current. Time to relate the two.
- The traditional definition of current is as the rate of charge flow

$$I \equiv \frac{dQ}{dt}$$

- For a steady current this gives $Q = I\Delta t$
- The unit for current is the ampère: 1 A = 1 C/s
- The current is related to the electron current by

$$I = \frac{Q}{\Delta t} = \frac{eN_e}{\Delta t} = ei_e$$

Current and Current Density

- So, the current and electron current are only different by a scale factor (e)
- However, there is an historical accident which still plagues us. The direction of current is defined to be the direction in which positive charges seem to move.
- In other words, we now know that electrons are carrying the charges and are negative, but all practical circuits are discussed in terms of the flow of positive charge!
- The microscopic understanding does not mesh well with the traditional convention. Nonetheless, we still use it. It makes no difference to practical calculations.

The Current Density in a Wire

We know the current is

$$I = ei_e = n_e e v_d A$$

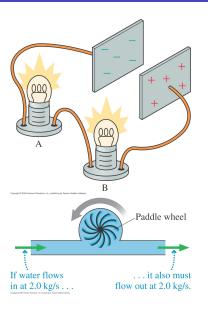
 Some of these factors depend on the wire, others on the electric field. We separate them by introducing current density

$$J \equiv \frac{I}{A} = n_e e v_d$$

 It can be useful to rearrange this and say that a specific piece of metal shaped into a wire with cross-sectional area A has current

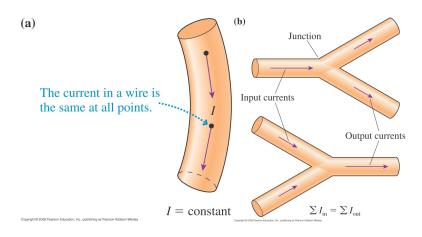
$$I = JA$$

Conservation of Current



- Two identical lightbulbs are placed in series in a circuit, Which one glows brighter?
- Neither, they are equally bright! The first lightbulb does not destory or "use-up" any of the electrons passing through it.
- Further, the electrons do not slow down (see water example).
- The law of current reads: The current is the same at all points on a current-carrying wire.

Conservation of Current



The sum of the currents entering a junction must equal the sum of those leaving is Kirchhoff's junction law.

Conductivity and Resistivity (31.4)

The current density can be expressed as

$$J = n_e e v_d = n_e e \left(\frac{e \tau E}{m}\right) = \frac{n_e e^2 \tau}{m} E$$

 The coefficent in front of the electric field depends only on the conducting material and is referred to as the conductivity

$$\sigma = \frac{n_e e^2 \tau}{m}$$

All pieces of copper have the same conductivity (at same T).

So, the current density becomes simply

$$J = \sigma E$$

Current density depends only on the material and the electric field.

It is also useful to define resistivity

$$\rho = \frac{1}{\sigma} = \frac{m}{n_e e^2 \tau}$$

Conductivity and Resistivity

TABLE 31.2 Resistivity and conductivity of conducting materials

Material	Resistivity (Ωm)	$\begin{array}{c} \text{Conductivity} \\ (\Omega^{-1} \text{m}^{-1}) \end{array}$
Aluminum	2.8×10^{-8}	3.5×10^{7}
Copper	1.7×10^{-8}	6.0×10^{7}
Gold	2.4×10^{-8}	4.1×10^{7}
Iron	9.7×10^{-8}	1.0×10^{7}
Silver	1.6×10^{-8}	6.2×10^{7}
Tungsten	5.6×10^{-8}	1.8×10^{7}
Nichrome*	1.5×10^{-6}	6.7×10^{5}
Carbon	3.5×10^{-5}	2.9×10^{4}

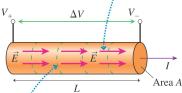
^{*}Nickel-chromium alloy used for heating wires.

Superconductivity

- A very interesting feature of metals is that their resistivity gradually drops with temperature.
- However, at very low temperatures there is a sudden transition to zero resistivity! This is known as superconductivity.
- Electrons in a superconductor move with friction. Superconducting wires can sustain enormous currents.
- The discovery of "high temperature" superconductors has had a big impact on their usefulness.

Resistance and Ohm's Law (31.5)

The potential difference creates an electric field inside the conductor and causes charges to flow through it.



Equipotential surfaces are perpendicular to the electric field.

- We know that current is related to electric field and that electric field is related to potential.
- So, it is natural that current and potential are also related.
- The field strength inside a wire is

$$E = -\frac{dV}{ds} = \frac{\Delta V}{\Delta s} = \frac{\Delta V}{L}$$

• The current in terms of field is

$$I = JA = A\sigma E = \frac{A}{\rho}E$$

Resistance and Ohm's Law

In terms of potential difference:

$$I = \frac{A}{\rho L} \Delta V$$

tells us that current depends on wire properties and the potential difference.

• We encapsulate the properties of the wire in the resistance

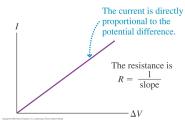
$$R = \frac{\rho L}{A}$$

- The resistivity is about the material, the resistance is about the specific piece of conductor (ie. including its length).
- The unit of resistance is the Ohm $1\Omega \equiv 1\frac{V}{A}$
- We can now write Ohm's Law as

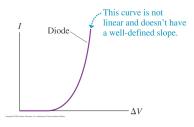
$$I = \frac{\Delta V}{R}$$

More on Ohm's Law

(a) Ohmic material



(b) Nonohmic materials



- Ohm's Law only applies to Ohmic materials.
- Wires are metals with small resistivity. Ideally they have $R=0\Omega$ and $\Delta V=0$
- Resistors are poor conductors with R ranging from 10 Ω to 1M Ω. They are used to control the current in a circuit.
- Insulators have very high resistance
 R = ∞. There is no current, even if
 there is a potential difference across it
 (eg. glass, plastic, air).