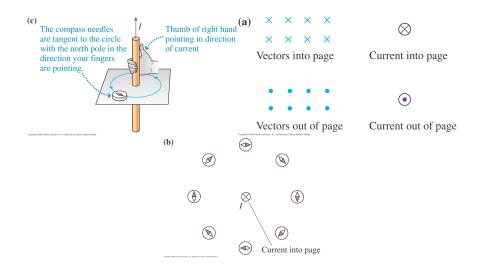
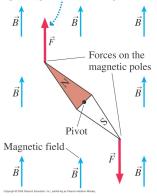
The Direction of Magnetic Field



The Magnetic Field

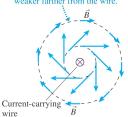
The magnetic force on the north pole is parallel to the magnetic field.



- We introduced electric field to explain-away long-range electric forces.
 Charges create a field throughout space with which other charges interact.
- Properties of a magnetic field:
 - A magnetic field is created at all points in space around a current-carrying wire.
 - ② Like \vec{E} , \vec{B} is a vector field
 - \vec{B} exerts forces on magnetic poles. North poles point along \vec{B} .
- So, a compass needle experiences a torque in a magnetic field until it is aligned with that field.

The Magnetic Field

(a) The magnetic field vectors are tangent to circles around the wire, pointing in the direction given by the right-hand rule. The field is weaker farther from the wire.



(b) Magnetic field lines are circles.

- We can represent the field by drawing field vectors. These show the direction a magnet would point at each spot. The length is the strength (see how it drops with distance).
- Another representation is with magnetic field lines. The field direction is tangent to a field line. The more close-packed the field lines, the stronger the field.
- Given a current in a wire, use the right-hand rule to get the direction.

The Right-Hand Rule

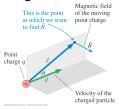
• Point your *right* thumb in the direction of the current.

2 Curl your fingers around the wire to indicate a circle.

3 Your fingers point in the direction of the magnetic " field lines around the wire.

The Source of Magnetic Field: Moving Charges (33.3)

- Since current seems to lead to magnetic field. Let's assume that moving charges are the source of magnetic field.
- We need the equivalent of Coulomb's Law. When a charge is moving, how "big" is the magnetic field at some distance r away?



The Biot-Savart Law is

$$|\vec{B}_{point\ charge}| = rac{\mu_0}{4\pi} rac{qv\sin heta}{r^2}$$

The direction of the vector is given by the right-hand rule. μ_0 is the permeability constant.

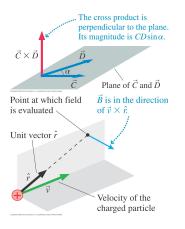
The unit of magnetic field strength is the Tesla.

Superposition

 Like electric fields, magnetic fields obey the principle of superposition. If there are n moving point charges the net field is given by the vector sum:

$$\vec{B}_{tot} = \vec{B}_1 + \vec{B}_2 + \dots + \vec{B}_n$$

The Vector Cross Product and Biot-Savart

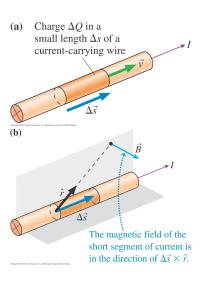


- If we want our Biot-Savart Law to have direction as well as magnitude we need again to introduce unit vector r̂.
- We also need a cross product:

$$\vec{B}_{point\ charge} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$$

 This agrees completely with our previous Biot-Savart definition but now has the direction built-in!

The Magnetic Field of a Current (33.4)



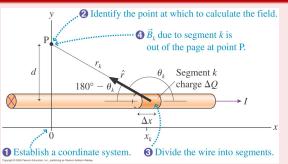
- Rather than a single point charge, let's look at the magnetic field from a current.
- Divide a current-carrying wire into segments of length Δs containing charge ΔQ moving at velocity v.
- The magnetic field created by this charge is proportional to $(\Delta Q)\vec{v}$:

$$(\Delta Q)\vec{v} = \Delta Q \frac{\Delta \vec{s}}{\Delta t} = \frac{\Delta Q}{\Delta t} \Delta \vec{s} = I \Delta \vec{s}$$

 The Biot-Savart Law for a short segment is:

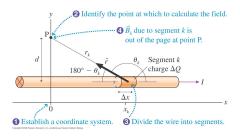
$$\vec{B} = \frac{\mu_0}{4\pi} \frac{I \Delta \vec{s} \times \hat{r}}{r^2}$$

Example 33.3: \vec{B} of a Long Wire



A long straight wire carries current I in the positive x direction. Find the magnetic field at a point which is a distance d from the wire.

We know the direction of the field already by the right-hand rule. The field points along the z axis only.

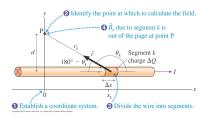


• We can use Biot-Savart to find the $(B_k)_z$, noting that the cross product $\Delta \vec{s} \times \hat{r} = (\Delta \vec{s})(1)(\sin \theta_k)$:

$$(B_k)_z = rac{\mu_0}{4\pi} rac{I\Delta x \sin heta_k}{r_k^2} = rac{\mu_0}{4\pi} rac{I \sin heta_k}{x_k^2 + d^2} \Delta x$$

• Also note that $\sin \theta_k$ is:

$$\sin(\theta_k) = \sin(180 - \theta_k) = \frac{d}{r_k} = \frac{d}{\sqrt{x_k^2 + d^2}}$$

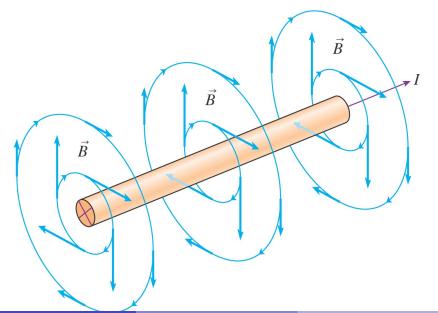


Substituting these back into Biot-Savart

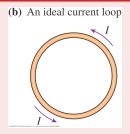
$$B = \frac{\mu_0 I d}{4\pi} \sum_{k} \frac{\Delta x}{(x_k^2 + d^2)^{3/2}}$$

$$B = \frac{\mu_0 I d}{4\pi} \int_{-\infty}^{\infty} \frac{dx}{(x^2 + d^2)^{3/2}}$$

$$B = \frac{\mu_0 I d}{4\pi} \frac{x}{(x^2 + d^2)^{1/2}} \Big|_{-\infty}^{\infty} = \frac{\mu_0}{2\pi} \frac{I}{d}$$

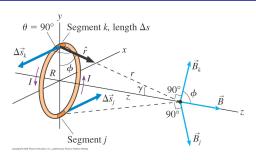


Example 33.5: \vec{B} of a Current Loop

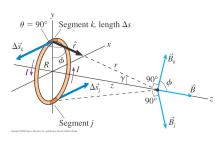


A circular loop of wire of radius R carries a current I. Find the magnitude of the field of the current loop at distance z on the axis of the loop

Hey, back to our favourite type of example - a ring!



- Assume CCW current and the loop in the x y plane. Look at the field from one small segment of loop.
- Note that the segment at the top (k) has opposite current flow from the segment at the bottom (j). The direction of the field is given by $\Delta \vec{s} \times \hat{r}$.
- The y components of k and j cancel.
- For every segment on the ring we can find a partner on the opposite side to cancel the y and x components.



• We will use the Biot-Savart Law to get the z component. Note that $\Delta \vec{s}_k \times \hat{r} = \Delta s(1) \sin 90 = \Delta s$

$$(B_k)_z = \frac{\mu_0}{4\pi} \frac{I\Delta s}{r^2} \cos \phi$$

From triangles we know that

$$\cos \phi = \frac{R}{r}, \quad r = (z^2 + R^2)^{1/2}$$

• This gives the magnetic field for one segment as:

$$(B_k)_z = \frac{\mu_0}{4\pi} \frac{IR}{(Z^2 + R^2)^{3/2}} \Delta s$$

Rings don't need integrals!

$$B_{loop} = rac{\mu_0 IR}{4\pi (z^2 + R^2)^{3/2}} \sum_k \Delta s$$
 $B_{loop} = rac{\mu_0 IR}{4\pi (z^2 + R^2)^{3/2}} 2\pi R$
 $B_{loop} = rac{\mu_0}{2} rac{IR^2}{(z^2 + R^2)^{3/2}}$

• We have many devices containing a coil of N loops. For z = 0:

$$B_{\text{centre of coil}} = \frac{\mu_0}{2} \frac{NI}{B}$$