Electricity & Magnetism Lecture 8: Capacitors

Today's Concept:

Capacitors

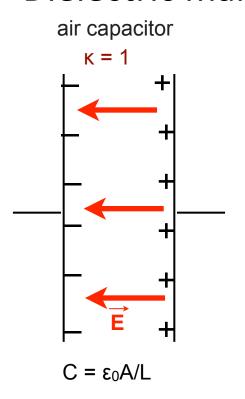
(Capacitors in a circuits, Dielectrics, Energy in capacitors)

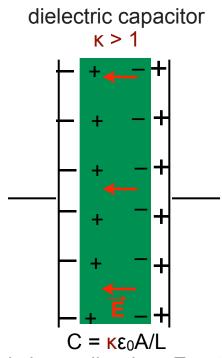
- Yesterday's homework credit 100% until next week.
 - Because of the maintenance outage lasted longer
- There are practise problems on flipit that you can

work.

- Review Problems
 - 31. Coulomb's Law
 - 32. Electric Fields
 - 33. Electric Flux and Field Lines
 - 34. Gauss' Law
 - 35. Electric Potential Energy
 - 36. Electric Potential
 - 37. Conductors and Capacitors

Stuff you asked about:

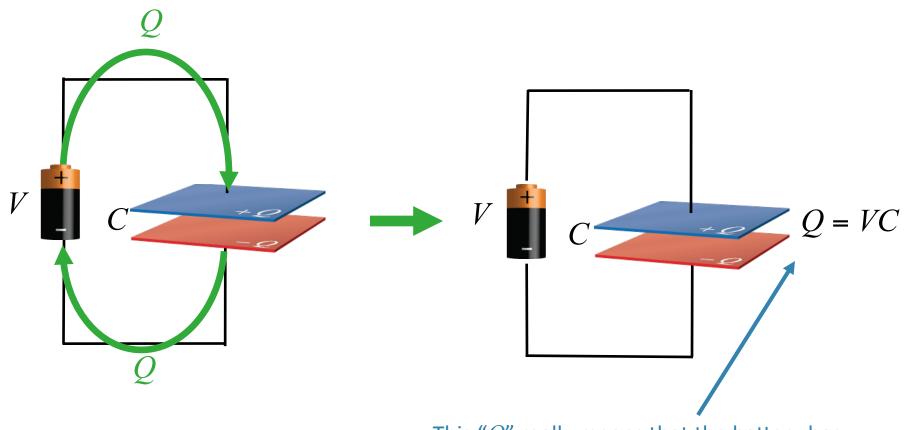

- "the formula for calculating capacitance in parallel and series are the opposite of the formula for resistance "
- "Please go over the Capactitors with and without a dielectric from checkpoint."
- "this stuff is a lot harder than what we've been doing before, one thing i don't understand is when you disconnect a battery from a capacitor what exactly happens, how come it still has a charge??"
- "can we add our own formulas to the sheet like how we did for phys 120 last term?"
 - Within reason.


Capacitors, connected and unconnected

- * A capacitor that is UNconnected to a battery has constant charge: V = Q/C (V is determined by Q)
- * A capacitor connected to a battery has a constant voltage. Q = CV (Q is determined by V)
- * Capacitors in parallel have the same voltage. Charge may redistribute among them: $Q_1/C_1 = Q_2/C_2 = Q_2/C_2$...
- Capacitors in series have the same charge.

Dielectric

- Charged capacitor, not connected to battery
- * Dielectric makes ΔV smaller

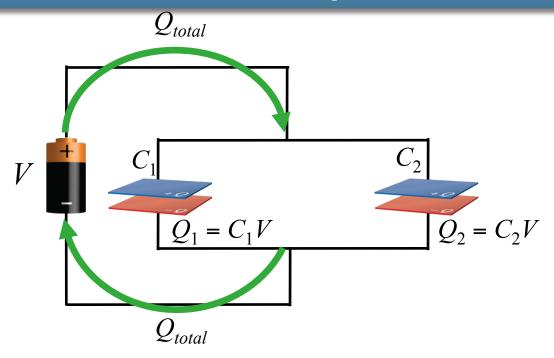


E inside dielectric is smaller than E outside.

The charge on the surface of the dielectric partially cancels the E field from the charge on the plates.


Therefore the ΔV between the plates is less.

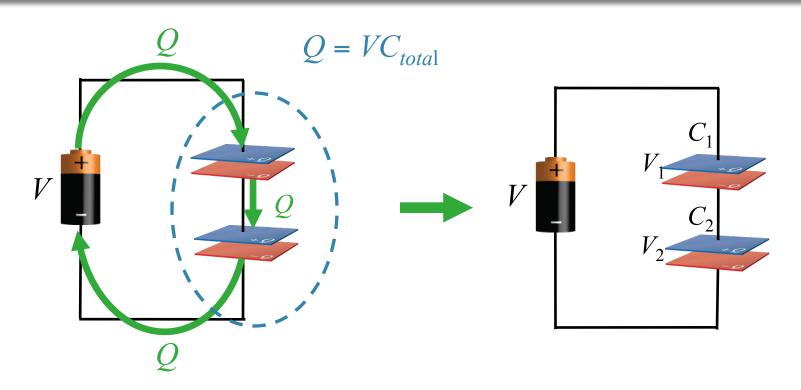
Simple Capacitor Circuit


This "Q" really means that the battery has moved charge Q from one plate to the other, so that one plate holds +Q and the other -Q.

Dielectrics

By adding a dielectric you are just making a new capacitor with larger capacitance (factor of K)

Parallel Capacitor Circuit

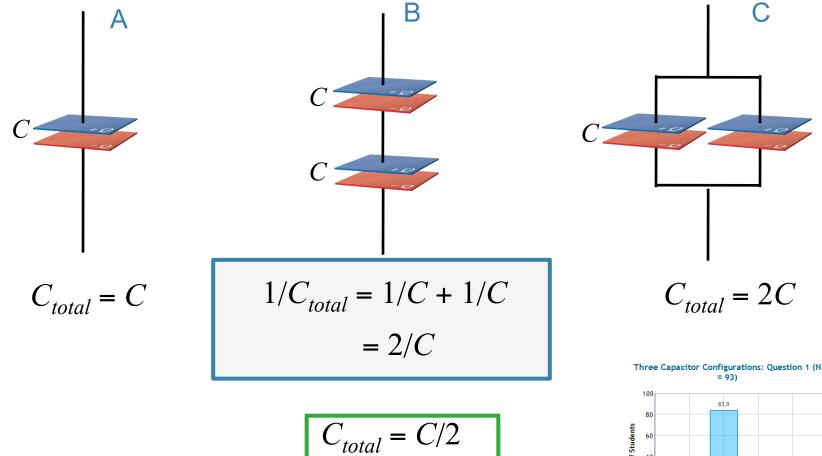


Key point: V is the same for both capacitors

Key Point:
$$Q_{total} = Q_1 + Q_2 = VC_1 + VC_2 = V(C_1 + C_2)$$

$$C_{total} = C_1 + C_2$$

Series Capacitor Circuit


Key point: Q is the same for both capacitors

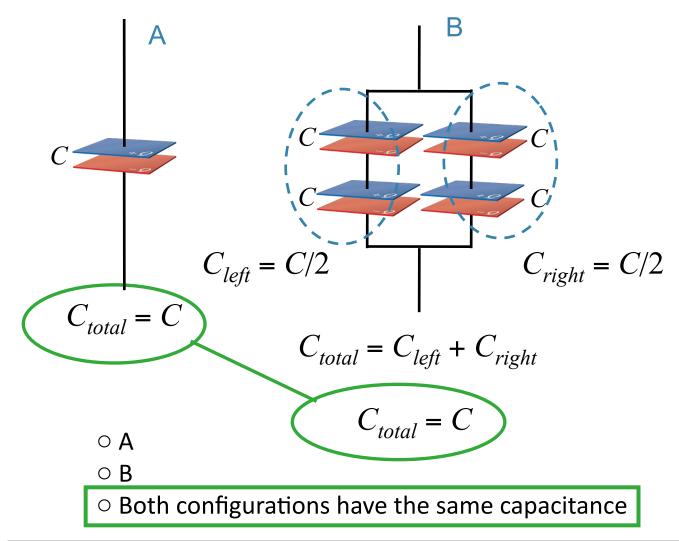
$$\text{Key point: } Q = VC_{total} = V_1C_1 = V_2C_2$$

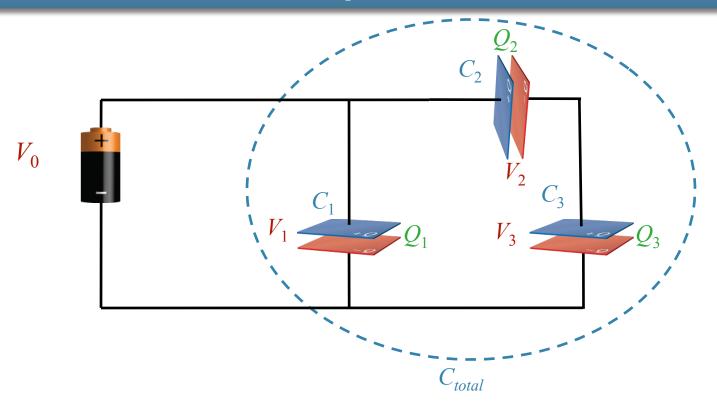
Also:
$$V = V_1 + V_2$$

$$Q/C_{total} = Q/C_1 + Q/C_2$$

$$\frac{1}{C_{total}} = \frac{1}{C_1} + \frac{1}{C_2}$$

CheckPoint: Three Capacitor Configurations


The three configurations shown below are constructed using identical capacitors. Which of these configurations has lowest total capacitance?


D: All 3 are the same

CheckPoint: Two Capacitor Configurations

The two configurations shown below are constructed using identical capacitors. Which of these configurations has the lowest overall capacitance?

Clicker Question: Capacitor Network

Which of the following is **NOT** necessarily true:

A)
$$V_0 = V_1$$

B)
$$C_{total} > C_1$$

C)
$$V_2 = V_3$$

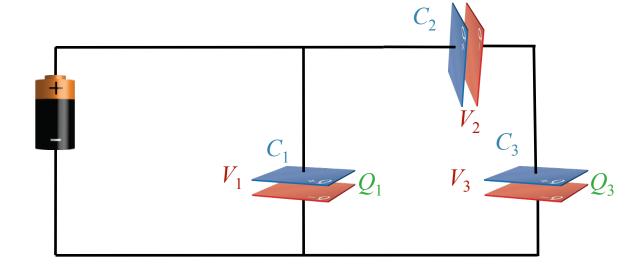
D)
$$Q_2 = Q_3$$

E)
$$V_1 = V_2 + V_3$$

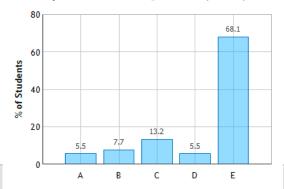
CheckPoint: Capacitor Network

A circuit consists of three unequal capacitors C_1 , C_2 , and C_3 which are connected to a battery of voltage V_0 . The capacitance of C_2 is twice that of C_1 . The capacitance of C_3 is three times that of C_1 . The capacitors obtain charges C_1 , C_2 , and C_3 .

Compare Q_1 , Q_2 , and Q_3 .

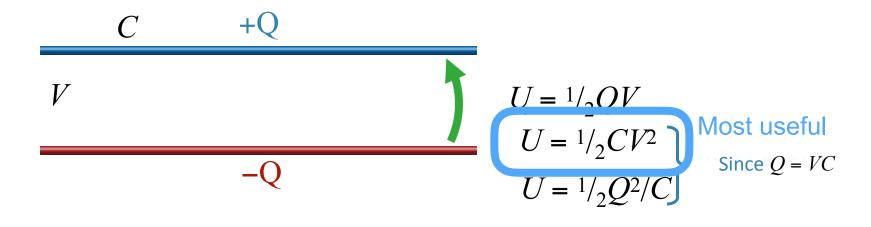

A.
$$Q_1 > Q_3 > Q_2$$

B. $Q_1 > Q_2 > Q_3$


$$C. Q_1 > Q_2 = Q_3$$

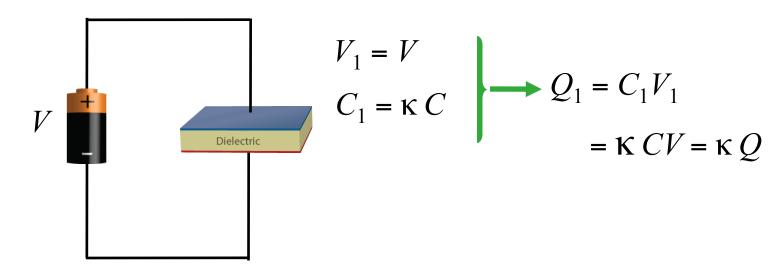
$$D. Q_1 = Q_2 = Q_3$$

$$E. Q_1 < Q_2 = Q_3$$



Capacitor Network: Question 1 (N = 91)

Energy in a Capacitor


In Prelecture 7 we calculated the work done to move charge Q from one plate to another:

This is potential energy waiting to be used...

Messing with Capacitors

If connected to a battery V stays constant

If isolated then total stays constant

$$Q_1 = Q$$

$$C_1 = \kappa C$$

$$V_1 = Q_1/C_1$$

$$= Q/\kappa C = V/\kappa$$

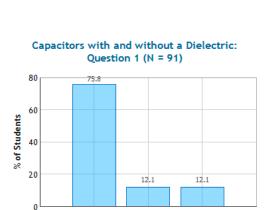
CheckPoint: Capacitors and Dielectrics 1

Two identical parallel plate capacitors are given the same charge Q, after which they are disconnected from the battery. After C_2 has been charged and disconnected, it is filled with a dielectric.

Compare the voltages of the two capacitors.

A.
$$V_1 > V_2$$

B.
$$V_1 = V_2$$

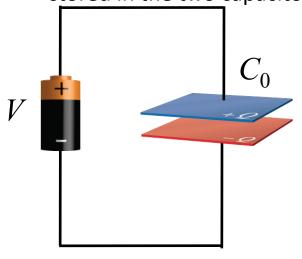

C.
$$V_1 < V_2$$

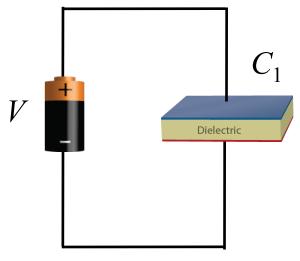
"The electric field decreases on the second due to the dielectric, so its voltage must decrease."

"The little brown thing is stopping the pikachus from reaching the other side."

" Dielectrics don't change voltages. "

"Capacitance lowers in case 2, meaning V increases in case 2."




С

Clicker Question: Messing with Capacitors

Two identical parallel plate capacitors are connected to identical batteries. Then a dielectric is inserted between the plates of capacitor C_1 . Compare the energy stored in the two capacitors.

A)
$$U_1 < U_0$$

B)
$$U_0 = U_1$$

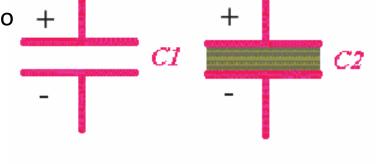
(c)
$$U_1 > U_0$$

Compare using $U = 1/2CV^2$

$$U_1/U_0 = \kappa$$

Potential Energy goes UP

CheckPoint: Capacitors and Dielectrics 2

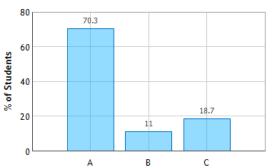

Two identical parallel plate capacitors are given the same charge Q, after which they are disconnected from the battery. After C_2 has been charged and disconnected, it is filled with a dielectric.

Compare the potential energy stored by the two capacitors.

$$A. U_1 > U_2$$

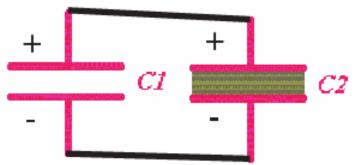
B.
$$U_1 = U_2$$

$$C. U_1 < U_2$$

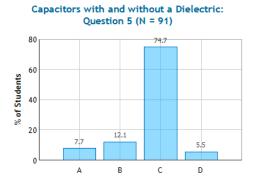


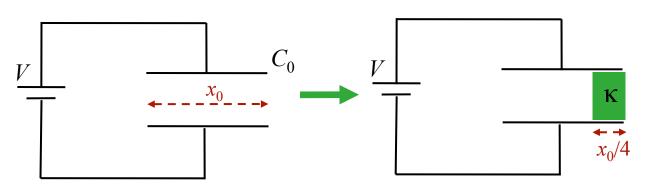
"If the electric field goes down, then so does the potential energy of the second system."

"Dielectrics don't affect potential."


"U = QV. Since voltage remains constant and charge increases, potential energy must also increase."

CheckPoint: Capacitors and Dielectrics 3


The two capacitors are now connected to each other by wires as shown. How will the charge redistribute itself, if at all?


V must be the same!

- A) The charges will flow so that the charge on C1 will become equal to the charge on C2.
- B) The charges will flow so that the energy stored in C1 will become equal to the energy stored in C2
- C) The charges will flow so that the potential difference across C1 will become the same as the potential difference across C2.
- D) No charges will flow. The charge on the capacitors will remain what it was before they were connected.

Q:
$$\frac{Q_1}{C_1} = \frac{Q_2}{C_2}$$
 $Q_1 = \frac{C_1}{C_2}Q_2$
U: $U_1 = \frac{1}{2}C_1V^2$ $U_1 = \frac{C_1}{C_2}U_2$

An air-gap capacitor, having capacitance C_0 and width x_0 is connected to a battery of voltage *V*.

A dielectric (κ) of width $x_0/4$ is inserted into the gap as shown.

What is Q_{ρ} the final charge

on the capacitor?

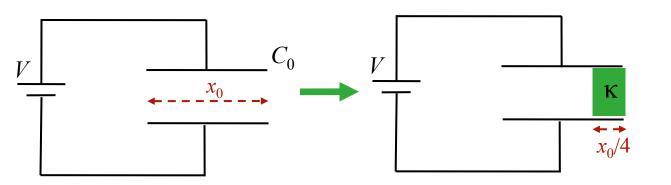
Conceptual Analysis:

$$C \equiv \frac{Q}{V}$$

What changes when the dielectric added?

E) V and Q

Adding dielectric changes the physical capacitor



C changes

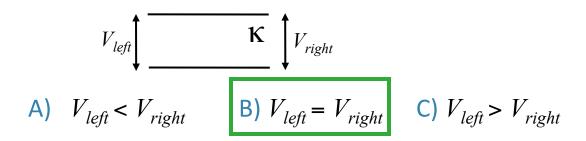
Q changes

of voltage V.

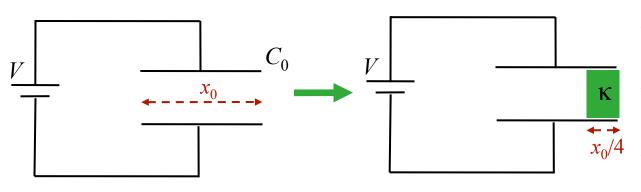
A dielectric (κ) of width

An air-gap capacitor, having capacitance C_0 and width

 x_0 is connected to a battery

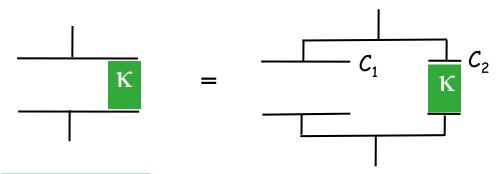

 $x_0/4$ is inserted into the gap as shown.

What is Q_p the final charge on the capacitor?


Strategic Analysis:

- Calculate new capacitance C
- Apply definition of capacitance to determine Q

To calculate *C*, let's first look at:


The conducting plate is an equipotential!

An air-gap capacitor, having U capacitance C_0 and width x_0 is connected to a battery of voltage V.

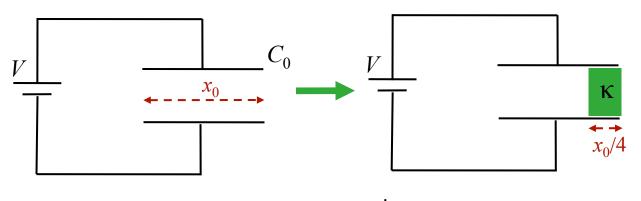
A dielectric (κ) of width $x_0/4$ is inserted into the gap as shown.

Can consider capacitor to be two capacitances, C_1 and C_2 , in parallel

What is Q_p the final charge on the capacitor?

In general. For parallel plate capacitor: $C = \varepsilon_0 A/d$

A) $C_1 = C_0$ B) $C_1 = \frac{3}{4}C_0$ C) $C_1 = \frac{4}{3}C_0$ D) $C_1 = \frac{1}{4}C_0$


What is C_1 ?

$$A = \frac{3}{4}A_{0}$$

$$A = \frac{3}{4}(\epsilon_{0}A_{0}/d_{0})$$

$$C_{1} = \frac{3}{4}C_{0}$$

$$C_{1} = \frac{3}{4}C_{0}$$

An air-gap capacitor, having capacitance C_0 and width x_0 is connected to a battery of voltage *V*.

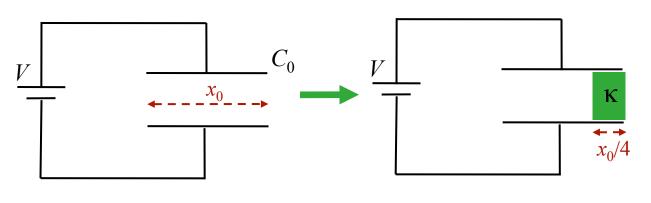
A dielectric (κ) of width $x_0/4$ is inserted into the gap as shown.

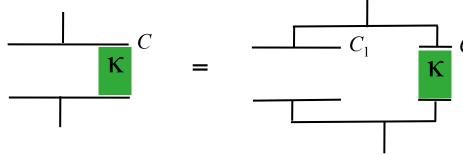
$$= \frac{C_1}{\kappa}$$

 C_2 What is Q_p , the final charge $C_1 = {}^3/_4C_0$ on the capacitor?

What is C_2 ?

A)
$$C_2 = \kappa C_0$$


B)
$$C_2 = \frac{3}{4} \kappa C_0$$


C)
$$C_2 = \frac{4}{3} \kappa C_0$$

A)
$$C_2 = \kappa C_0$$
 B) $C_2 = \frac{3}{4} \kappa C_0$ C) $C_2 = \frac{4}{3} \kappa C_0$ D) $C_2 = \frac{1}{4} \kappa C_0$

In general. For parallel plate capacitor filled with dielectric: $C = \kappa \epsilon_0 A/d$

$$A = \frac{1}{4}A_0$$
 $d = d_0$
 $C = \frac{1}{4}(\kappa \epsilon_0 A_0/d_0)$
 $C_2 = \frac{1}{4} \kappa C_0$

An air-gap capacitor, having capacitance C_0 and width x_0 is connected to a battery of voltage V.

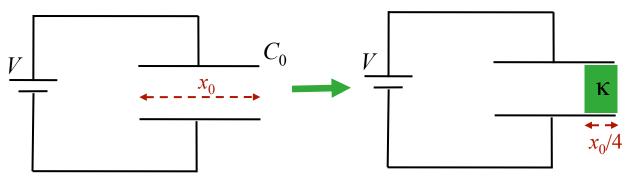
A dielectric (κ) of width $x_0/4$ is inserted into the gap as shown.

What is Q_p , the final charge on the capacitor?

$$C_2 = \frac{1}{4} \kappa C_0$$

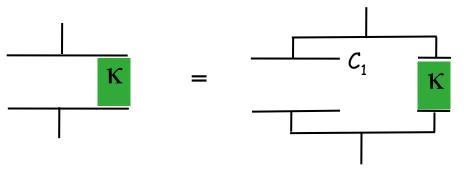
What is *C*?

A)
$$C = C_1 + C_2$$


$$B) C = C_1 + \kappa C_2$$

A)
$$C = C_1 + C_2$$
 B) $C = C_1 + \kappa C_2$ C) $C = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)^{-1}$

 $C_1 = \frac{3}{4}C_0$


 $C = \text{parallel combination of } C_1 \text{ and } C_2$: $C = C_1 + C_2$

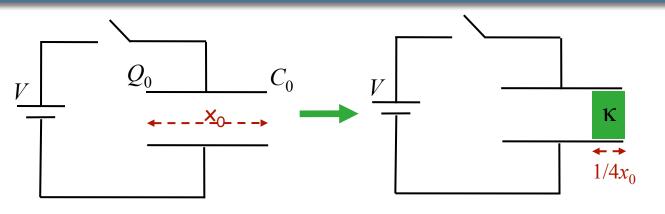
$$C = C_0 (3/_4 + 1/_4 \kappa)$$

An air-gap capacitor, having capacitance C_0 and width x_0 is connected to a battery of voltage V.

A dielectric (κ) of width $x_0/4$ is inserted into the gap as shown.

What is Q_p , the final charge on the capacitor?

$$C_1 = \frac{3}{4}C_0$$
 $C_2 = \frac{1}{4} \kappa C_0$


$$C = C_0 (3/_4 + 1/_4 \kappa)$$

What is Q?

$$C = \frac{Q}{V} \longrightarrow Q = VC$$

$$Q = VC_0 \left(\frac{3}{4} + \frac{1}{4} \kappa \right)$$

Different Problem

A)
$$V_f < V$$

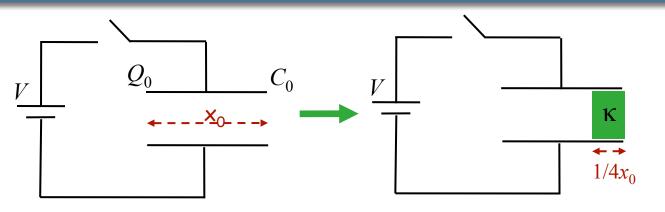
B)
$$V_f = V$$

C)
$$V_f > V$$

An air-gap capacitor, having capacitance C_0 and width x_0 is connected to a battery of voltage V and then battery is disconnected.

A dielectric (κ) of width $1/4x_0$ is inserted into the gap as shown.

What is V_f , the final voltage on the capacitor?


Q stays same: no way to add or subtract

$$Q = Q_0 = C_0 V$$

$$C = C_0 (3/_4 + 1/_4 \kappa)$$

$$V_f = Q/C = V/(3/_4 + 1/_4 \kappa)$$

Different Problem

An air-gap capacitor, having capacitance C_0 and width x_0 is connected to a battery of voltage V and then battery is disconnected.

A dielectric (κ) of width $1/4x_0$ is inserted into the gap as shown.

What is V_f , the final voltage on the capacitor?

$$V_f = Q/C = V/(3/_4 + 1/_4 \kappa)$$

How did energy stored in capacitor change when dielectric inserted?

A) U increased B) U stayed same C) U decreased

$$U = \frac{1}{2} Q^2/C$$

Q remained same C increased

U decreased

Capacitors, connected and unconnected

- * A capacitor that is **UN**connected to a battery has constant charge: V = Q/C (V is determined by Q)
- * A capacitor connected to a battery has a constant voltage. Q = CV (Q is determined by V)
- * Capacitors in parallel have the same voltage. Charge may redistribute among them: $Q_1/C_1 = Q_2/C_2 = Q_2/C_2$...
- Capacitors in series have the same charge.