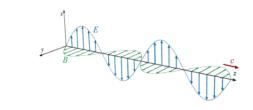
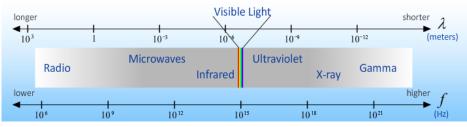
# Electricity & Magnetism Lecture 23

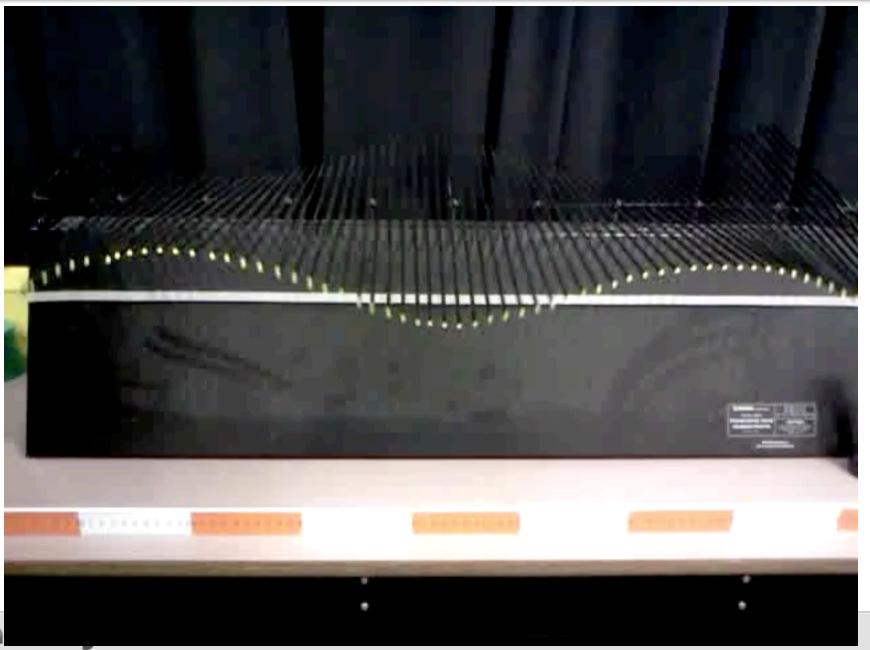
#### PROPERTIES of ELECTROMAGNETIC WAVES



#### **Electromagnetic Spectrum**



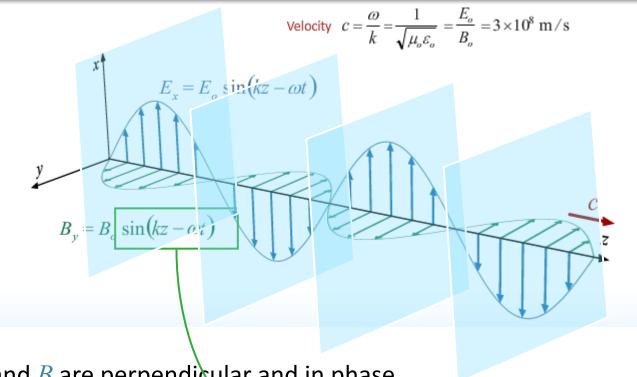
# 1 cycle per second



# 2 cycles per second



# Plane Waves from Last Time



E and B are perpendicular and in phase

Oscillate in time and space

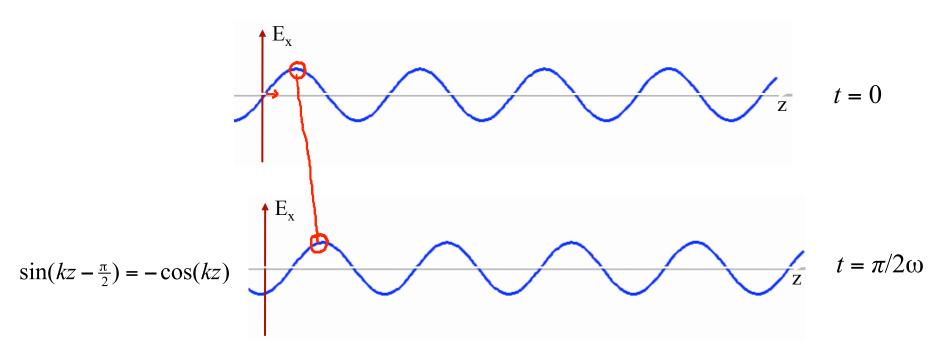
Direction of propagation given by  $E \times B$ 

$$B_0 = E_0/c$$

Argument of sin/cos gives direction of propagation

## Understanding the speed and direction of the wave

$$E_x = E_0 \sin(kz - \omega t)$$



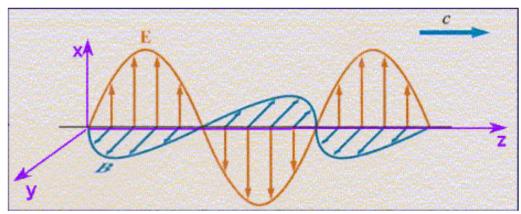
What has happened to the wave form in this time interval?

It has MOVED TO THE RIGHT by  $\lambda/4$ 

speed = 
$$c = \frac{\lambda/4}{\pi/2\omega} = \lambda \frac{\omega}{2\pi} = \lambda f$$

## CheckPoint 2



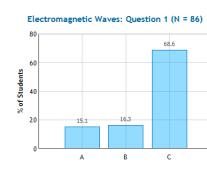


Which equation correctly describes this electromagnetic wave?

$$\bigcirc \mathbf{E}_{\mathbf{x}} = \mathbf{E}_{\mathbf{0}} \sin(k\mathbf{z} \oplus \omega t)$$
 No – moving in the minus  $z$  direction

$$\bigcirc \mathbf{E}_{\mathbf{v}} = \mathbf{E}_{\mathbf{o}} \sin(k\mathbf{z} - \omega t)$$
 No – has  $E_{\mathbf{y}}$  rather than  $E_{\mathbf{x}}$ 

$$\bigcirc \mathbf{B}_{\mathbf{y}} = \mathbf{B}_{\mathbf{o}} \sin(k\mathbf{z} - \omega t)$$



# From the prelecture



The equation for the x-component of the electric field of a plane electromagnetic wave is given by:  $E_x = E_0 \sin(kz - \omega t)$ 

Which of the following equations describes the associated magnetic field?

A) 
$$B_y = E_o c \sin(kz - \omega t)$$

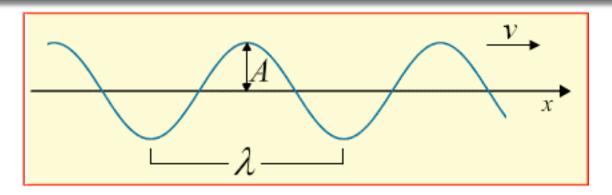
B) 
$$B_v = (E_o/c) \sin(kz - \omega t)$$

c) 
$$B_y = E_o c \cos(kz - \omega t)$$

D) 
$$B_v = (E_o/c) \cos(kz - \omega t)$$

## Prelecture question

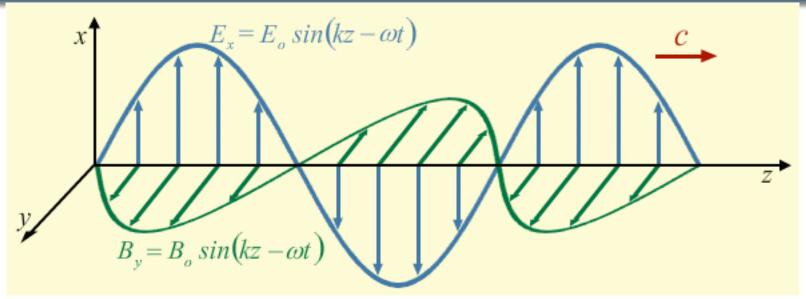




- Which of the following statements does not correctly describe a harmonic plane wave traveling in some medium.
- A)The time taken by any point of the wave to make one complete oscillation does not depend on the amplitude.
- B) Doubling the wavelength of the wave will halve its frequency.
- c) Doubling the amplitude has no effect on the wavelength.
- D) Doubling the frequency of the wave will double its speed.

#### **Prelecture**





An electromagnetic wave is traveling through free space and the magnitudes of its electric and magnetic fields are  $E_o$  and  $B_o$  respectively. It then passes through a filter that cuts the magnitude of the electric field by a quarter ( $E = E_o/4$ ). What happens to the magnitude of the magnetic field?

A. 
$$B = B_0/4$$

B. 
$$B = B_0/2$$

C. 
$$B = B_o$$

### **Prelecture Question**

The color of the stars we observe in galaxies can be used to deduce the velocity of the galaxy relative to Earth.

Suppose the average color of the stars in a newly discovered galaxy is **bluer** than the average color of stars in our own galaxy. What would be a sensible conclusion about the motion of the new galaxy relative to our own?

- A. That it is moving toward us.
- B. That it is moving away from us.

#### CheckPoint 6



Your iclicker operates at a frequency of approximately 900 MHz (900x10<sup>6</sup> Hz). What is the approximately wavelength of the EM wave produced by your iclicker?

- 0.03 meters
- ○0.3 meters
- ○3.0 meters
- ○30. meters

$$C = 3.0 \text{ x } 10^8 \text{ m/s}$$

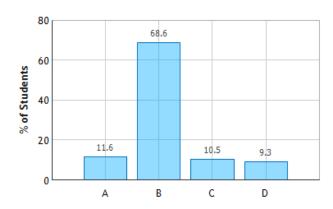
Wavelength is equal to the speed of light divided by the frequency.

$$\lambda = \frac{c}{f} = \frac{300,000,000}{900,000,000} = \frac{1}{3}$$

#### Check:

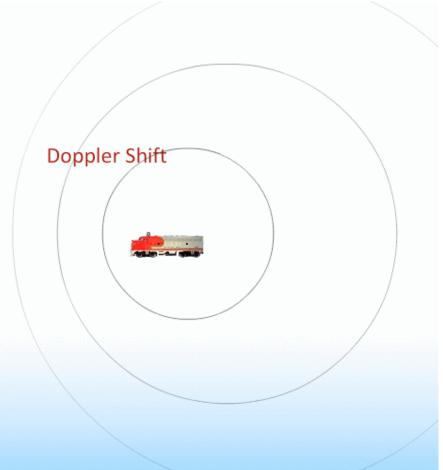
Look at size of antenna on base unit

#### EM waves from an iclicker: Question 1 (N = 86)



# Doppler Shift







**BigBang** 

The Big Idea

As source approaches: Wavelength decreases Frequency Increases

# Doppler Shift for E-M Waves

What's Different from Sound or Water Waves?

Sound /Water Waves :

You can calculate (no relativity needed)

BUT

Result is somewhat complicated: is source or observer moving wrt medium?

**Electromagnetic Waves:** 

You need relativity (time dilation) to calculate

BUT

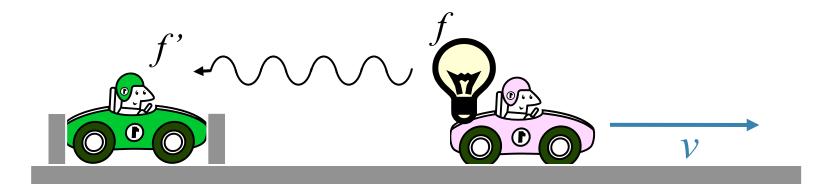
Result is simple: only depends on relative motion of source & observer

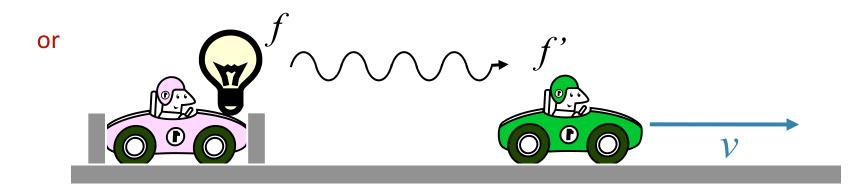
$$f' = f \sqrt{\frac{1+\beta}{1-\beta}} \qquad \begin{array}{c} \beta = v/c \\ \beta > 0 \quad \text{if source \& observer are approaching} \\ \beta < 0 \quad \text{if source \& observer are separating} \end{array}$$

$$\beta = v/c$$

 $\beta$  < 0 if source & observer are separating

# Doppler Shift for E-M Waves





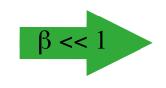
The Doppler Shift is the SAME for both cases! f'/f only depends on the relative velocity

$$f' = f\sqrt{\frac{1+\beta}{1-\beta}}$$

# Doppler Shift for E-M Waves

#### A Note on Approximations

$$f' = f\sqrt{\frac{1+\beta}{1-\beta}}$$



$$\beta << 1$$
  $f' \approx f(1 + \beta)$ 

why?

Taylor Series: Expand 
$$F(\beta) = \left(\frac{1+\beta}{1-\beta}\right)^{1/2}$$
 around  $\beta = 0$ 

$$F(\beta) = F(0) + \frac{F'(0)}{1!}\beta + \frac{F''(0)}{2!}\beta^2 + \dots$$

Evaluate:

$$F(0) = 1$$

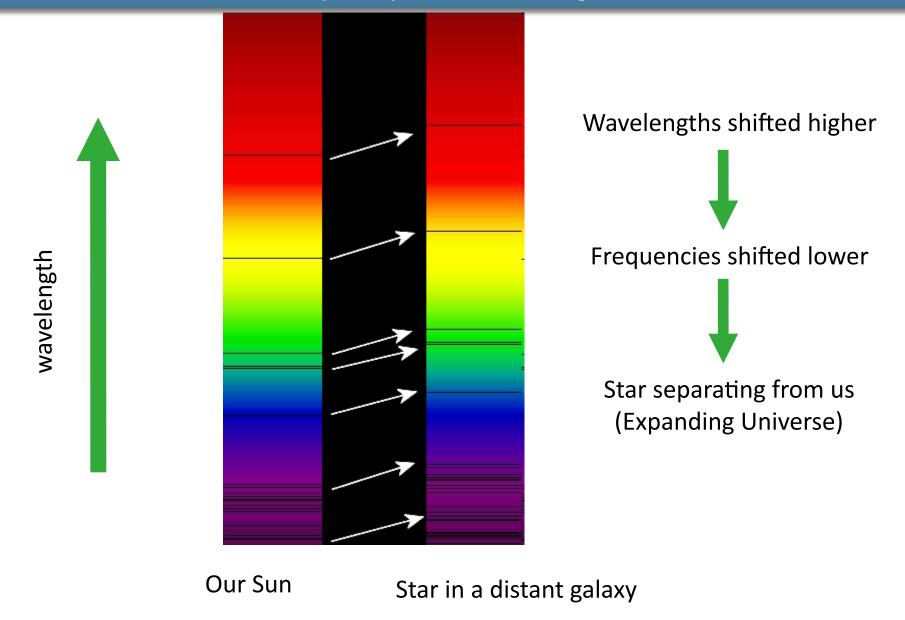
$$F'(0) = 1$$



$$F(\beta) \approx 1 + \beta$$

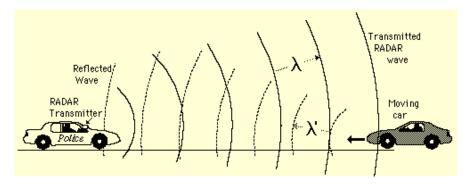
NOTE:

# Red Shift of Stellar Spectra



# Example





Police radars get twice the effect since the EM waves make a round trip:

$$f' \approx f(1+2\beta)$$

If f = 24,000,000,000 Hz (k-band radar gun) c = 300,000,000 m/s

| $\nu$             | β                        | f'             | f'-f    |
|-------------------|--------------------------|----------------|---------|
| 30 m/s (108 km/h) | 1.000 x 10 <sup>-7</sup> | 24,000,004,800 | 4800 Hz |
| 31 m/s (112 km/h) | 1.033 x 10-7             | 24,000,004,959 | 4959 Hz |

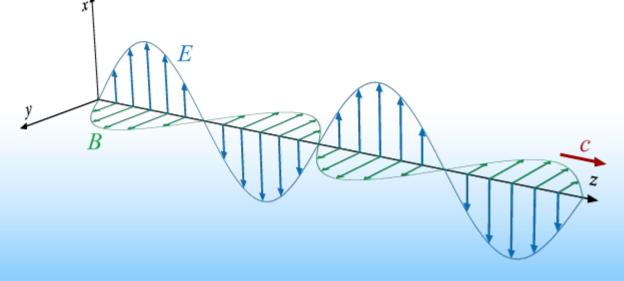
# Waves Carry Energy

#### **Total Energy Density**

$$u = \varepsilon_o E^2$$

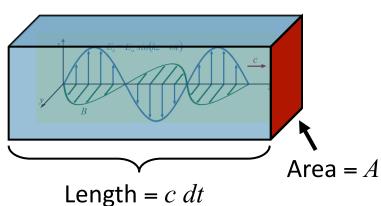
Average Energy Density 
$$\langle u \rangle = \frac{1}{2} \varepsilon_o E_o^2$$

Intensity
$$I = \frac{1}{2} c \varepsilon_o E_o^2 = c \langle u \rangle$$



# Intensity

Intensity = Average energy delivered per unit time, per unit area



Intensity  $I = \frac{1}{2} c \varepsilon_o E_o^2 = c \langle u \rangle$ 

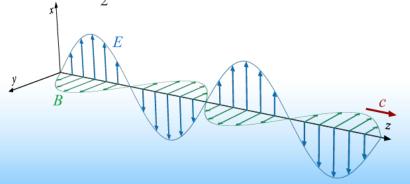
Length – t

#### Total Energy Density

 $u = \varepsilon_o E^2$ 

Average Energy Density

$$\langle u \rangle = \frac{1}{2} \varepsilon_o E_o^2$$



$$I = \frac{1}{A} \left\langle \frac{dU}{dt} \right\rangle$$

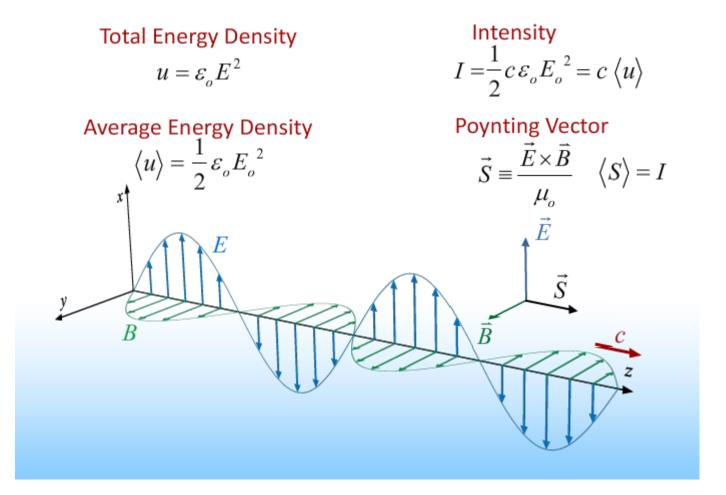
$$\longrightarrow$$
  $\langle dU \rangle = \langle u \rangle \times olume = \langle u \rangle Acdt$ 

$$I = c\langle u \rangle$$

#### Sunlight on Earth:

 $I \sim 1000 \text{ J/s/m}^2$ ~ 1 kW/m<sup>2</sup>

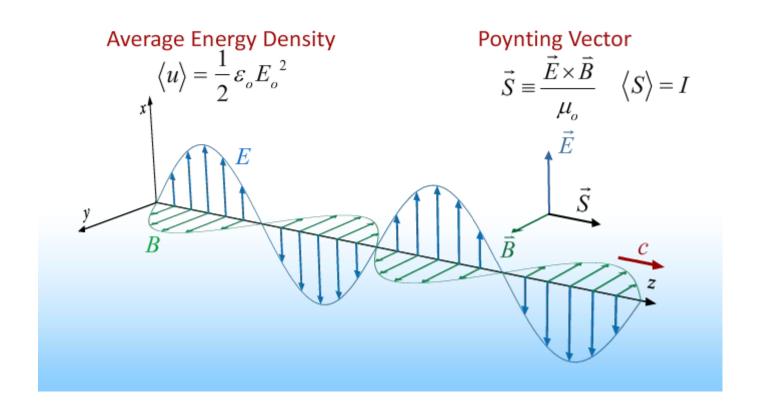
# Waves Carry Energy



# Comment on Poynting Vector

Just another way to keep track of all this:

Its magnitude is equal to I Its direction is the direction of propagation of the wave

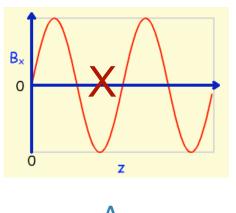


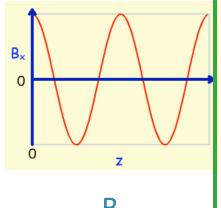
#### Exercise

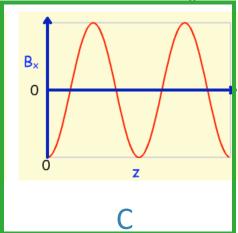
An electromagnetic wave is described by: where  $\hat{j}$  is the unit vector in the +y direction.

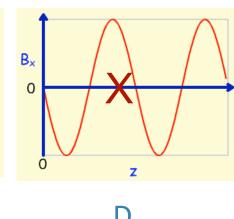
$$\vec{E} = \hat{j}E_0\cos(kz - \omega t)$$

Which of the following graphs represents the z – dependence of  $B_y$  at t = 0?



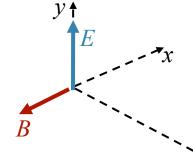






E and B are "in phase" (or  $180^{\circ}$  out of phase)

 $\vec{E} \times \vec{B}$  Points in direction of propagation



$$\vec{B} = -\hat{i}B_0 \cos(kz - \omega t)$$

# Light has Momentum!

If it has energy and its moving, then it also has momentum:

Analogy from mechanics:

$$E = \frac{p^{2}}{2m}$$

$$\frac{dE}{dt} = \frac{2p}{2m} \frac{dp}{dt} = \frac{mv}{m} \frac{dp}{dt} = vF$$

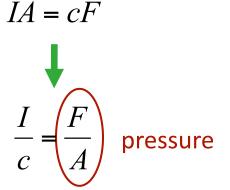
$$\frac{dU}{dt} = IA$$

$$v \to c$$

For E - M waves:

$$P = \frac{I}{c}$$

Radiation pressure



#### CheckPoint 4



-... An electromagnetic wave has electric field amplitude E, wavelength  $\lambda$ , and frequency  $\omega$ . Which should we increase if we want the energy carried by the wave to increase (you can mark more than one answer).

- A) 🗆 E
- B) 🗌 λ
- C) 🔲 💩

Intensity
$$I = \frac{1}{2} c \varepsilon_o E_o^2$$

But then again, what are we keeping constant here?

WHAT ABOUT PHOTONS?

#### **Photons**

We believe the energy in an e-m wave is carried by photons

Question: What are Photons?

Answer: Photons are Photons.

Photons possess both wave and particle properties

Particle:

**Energy and Momentum localized** 

Wave:

They have definite frequency & wavelength  $(f\lambda = c)$ 

Connections seen in equations:

$$E = hf$$
 Planck's constant  $h = 6.63 \times 10^{-34} J \cdot s$ 

Question: How can something be both a particle and a wave?

Answer: It can't (when we observe it)

What we see depends on how we choose to measure it!

The mystery of quantum mechanics: More on this in PHYS 285

#### Exercise

An electromagnetic wave is described by:

$$\vec{E} = \frac{\hat{i} + \hat{j}}{\sqrt{2}} E_0 \cos(kz + \omega t)$$



What is the form of B for this wave?

$$\mathbf{A}) \quad \vec{B} = \frac{\hat{i} + \hat{j}}{\sqrt{2}} \left( E_0 / c \right) \cos(kz + \omega t)$$

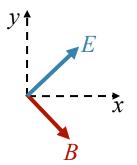
C) 
$$\vec{B} = \frac{-\hat{i} + \hat{j}}{\sqrt{2}} (E_0 / c) \cos(kz + \omega t)$$

$$\mathbf{B}) \quad \vec{B} = \frac{\hat{i} - \hat{j}}{\sqrt{2}} (E_0 / c) \cos(kz + \omega t)$$

$$\mathbf{D}) \quad \vec{B} = \frac{-\hat{i} - \hat{j}}{\sqrt{2}} (E_0 / c) \cos(kz + \omega t)$$

$$\vec{E} = \frac{\hat{i} + \hat{j}}{\sqrt{2}} E_0 \cos(kz + \omega t)$$

Wave moves in -z direction



- +z points out of screen
- −z points into screen

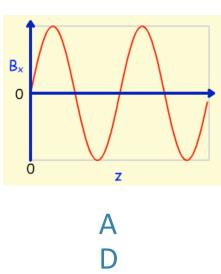
#### Exercise

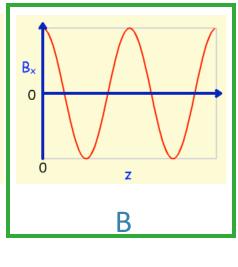


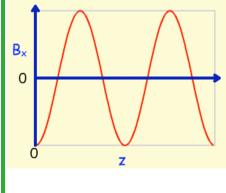
An electromagnetic wave is described by:

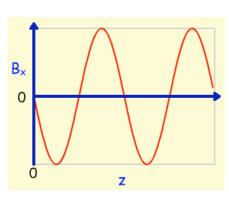
$$\vec{E} = \hat{j}E_0 \sin(kz + \omega t)$$

Which of the following plots represents  $B_x(z)$  at time  $t = \pi/2\omega$  ?

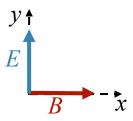








Wave moves in negative z direction



- + z points out of screen
- z points into screen

$$\vec{B} = \hat{i}(E_0/c)\sin(kz + \omega t)$$

at 
$$\omega t = \pi/2$$
:  
 $B_x = (E_0/c)\sin(kz + \pi/2)$ 

$$B_x = (E_0/c) \left\{ \sin kz \cos (\pi/2) + \cos kz \sin (\pi/2) \right\}$$

$$B_{r} = (E_{0}/c)\cos(kz)$$