Welcome to Physics 121

My name is Neil Alberding

This course covers electricity and magnetism — things like electric charges, magnets, DC and AC Circuits, electromagnetic waves and optics.

Lectures and Tutorials

There are three lectures a week, 1 hr each and one tutorial, 1 hr

no lab in this course. Physics 133 is a separate lab course that you may take along with Physics 121.

If you like lab with course you can take Physics 141 in Surrey

Physics 121

- Electricity
- DC Circuits
- Magnetism
- AC Circuits
- Electromagnetic Waves
- Optics

Schedule

PHYS121 Summer 2020

Date 2020	week
Mon May 11	1 Electrostatics
Wed May 13	1 Coulomb's Law
Fri May 15	1 Electric Fields
Mon May 18	2 Victoria Day
Wed May 20	2 Electric Flux and Field Lines
Fri May 22	2 Gauss' Law
Mon May 25	3 Gauss' Law Calculations
Wed May 27	3 Electric Potential Energy
Fri May 29	3 Electric Potential
Mon June 1	4 Conductors and Capacitance
Wed June 3	4 Capacitors
Fri June 5	4 Electric Current
Mon June 8	5 Kirchhoff's Rules
Wed June 10	5 RC Circuits
Fri June 12	5
Mon June 15	6 Magnetism
Wed June 17	6 Forces and Torques on Currents
Fri June 19	6 Biot-Savart Law
Mon June 22	7 Ampere's Law
Wed June 24	7 Review, DQ7B
Thu June 25	7 Midterm
Mon June 29	8 Motional EMF
Wed July 1	8 Canada Day
Fri July 3	8 Faraday's Law
Mon July 6	9 Induction and RL Circuits
Wed July 8	9 LRC Circuits
Fri July 10	9
Mon July 13	10 AC Circuits
Wed July 15	10 AC Circuits: Resonance and Power
Fri July 17	10 Displacement Current and E-M Waves
Mon July 20	11 Properties of Electromagnetic Waves
Wed July 22	11 DQ11E, DQ12A
Fri July 24	11
Mon July 27	12 Reflection and Refraction
Wed July 29	12 Lenses, Mirrors

Electrostatics

DC Circuits

Magnetism

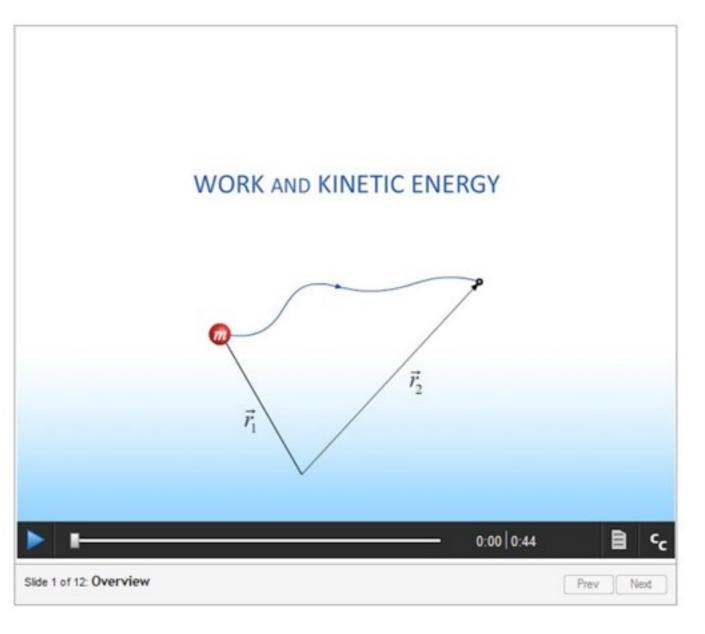
AC Circuits
Electromagnetic Waves
Optics

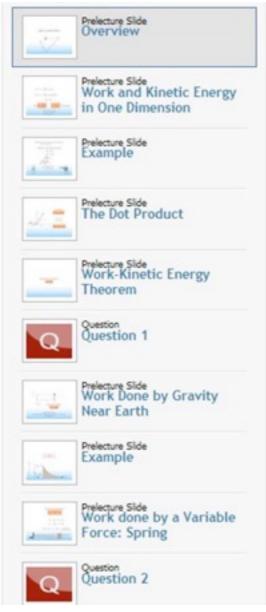
Welcome to Physics 121

Your required course material:

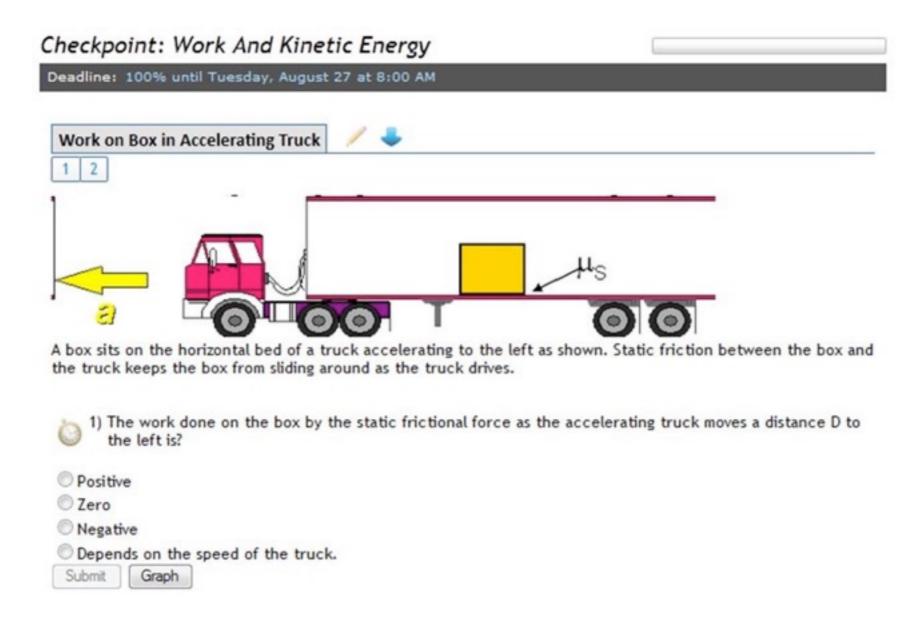
FlipItPhysics

FlipItPhysics.com


by Gary Gladding, Mats Selen, and Tim Stelzer

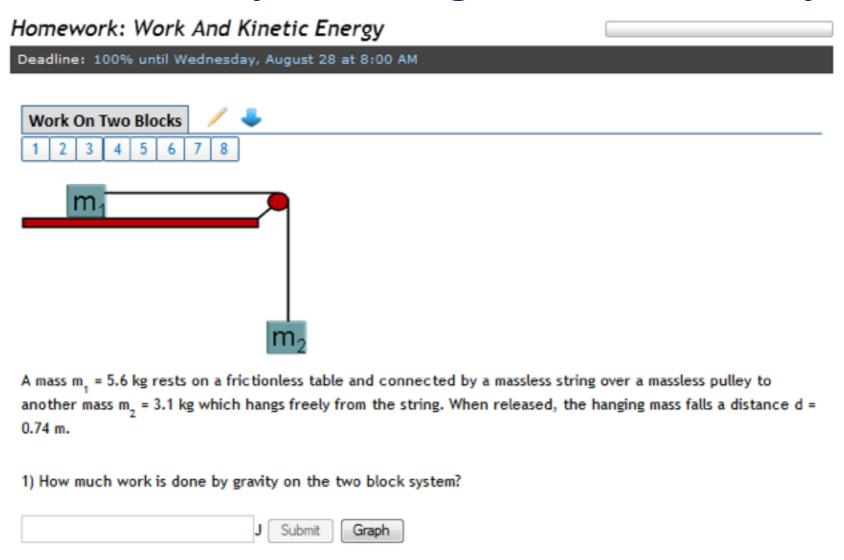

FlipItPhysics Course Overview

includes:


- 1. Online PreLectures (animated lessons, completed <u>before</u> <u>lecture</u>)
- 2. Online CheckPoints (quizzes to check knowledge, completed <u>before lecture</u>)
- 3. In-class Lectures (interactive, with clicker activities)
- 4. Online homework exercises
- 5. Printed textbook (reference, problems)

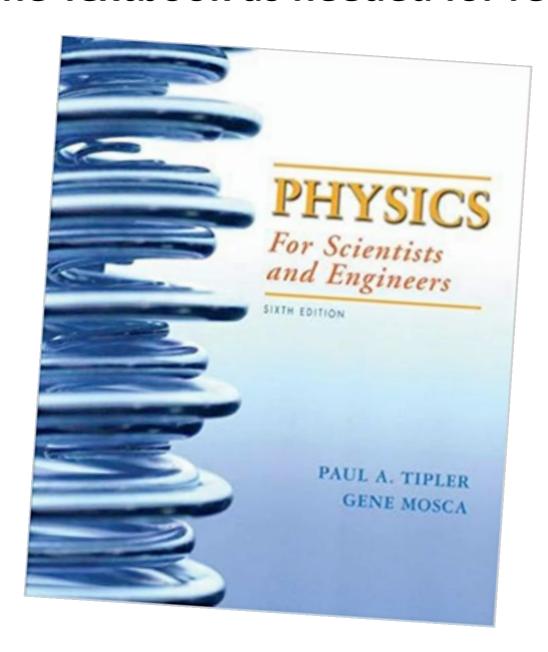
You will VIEW PreLectures before class.

Next, you'll complete a CheckPoint quiz <u>before</u> lecture to CHECK your understanding of the PreLecture.


COME to Lecture!

The lecture will be more interactive because of the work you've done before class.

Your comments:

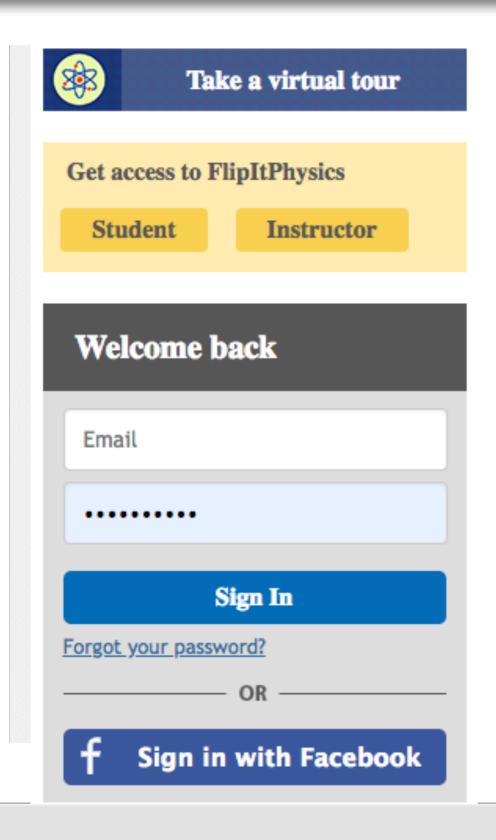

- I would appreciate some discussion on the ties between calculus and the three laws
- I felt very confident during most of the time while doing the prelecture and preflight, you can go over whatever you want as far as I'm concerned.
- I don't quite understand how the change of momentum relates to net force and acceleration.
- > I knew all of these surprisingly well. Or at least I think I do.
- Why (in physics terms) wouldn't an object like a wall move according to Newton's Third Law if it does not have balanced forces on it (net force =/=0, so shouldn't it accelerate per Newton's First Law?
- How does net force differ from other forces? Also, in relation to centripetal motion, in which directions are acceleration, momentum, and velocity.
- why the acceleration of the car is towards the center of the circle, yet the car's velocity is pointing directly forward from the car at any point in time.

Next, you must complete assigned homework problems.

*A single assignment may contain multiple problems.

READ the Textbook as needed for review.

So how do you get started?


To access to FlipItPhysics:

Create an account

 Join my course so you can see my assignments and get credit for your work
 Course id: sfuphys121b

 Purchase access (by activating a printed activation code purchased through the bookstore or purchased online)

Create a FlipItPhysics Account

1. Go to <u>flipitphysics.com</u>

2. Click the "Student" button to begin the registration process OR register using your Facebook account.

Create an account

- 3. Begin the process of registering for the site. Enter your email address (your SFU email address) and choose a password.
- 4. Complete the Captcha Image
- 5. Click "Register"

Account Creation Page

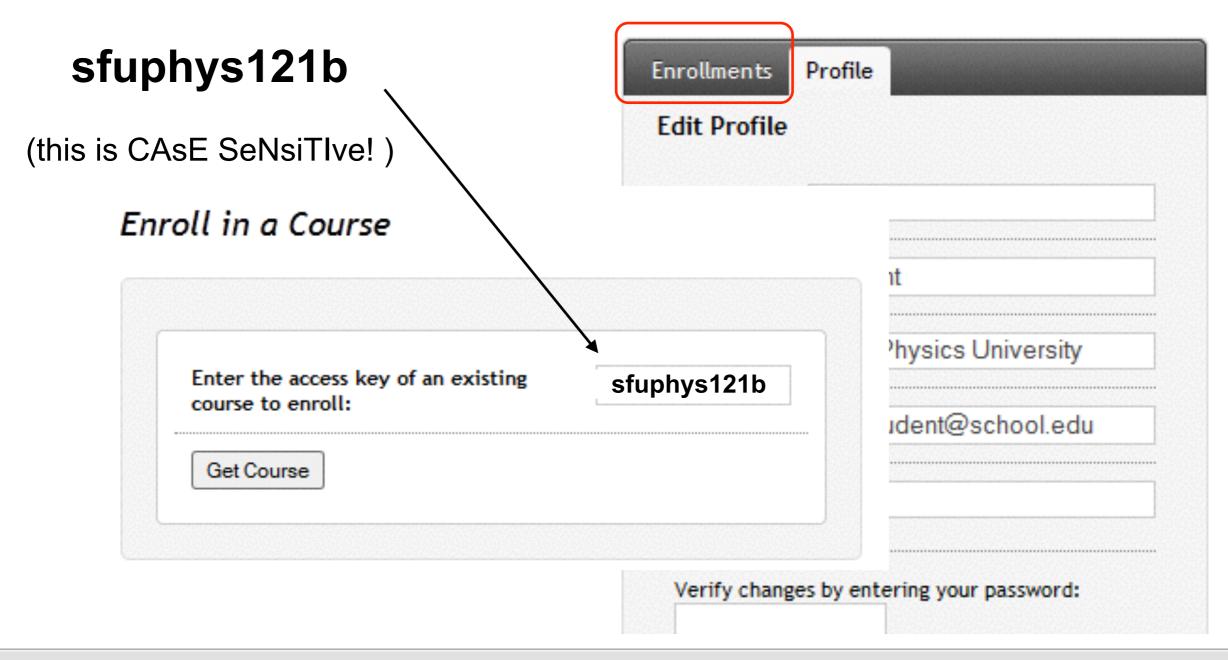
Dlasca usa the form he	elow to create a new account.
riease use the form be	now to create a new account.
Email Address	
Confirm Email	
Password (Minimum of 6 characters)	
Confirm Password	
enerate a new Capt	cha image u can read from the image:

Create an account

6. Set up your profile (first name, last name, institution)

(Connect your Facebook Account if you want)

7. Re-enter your password, then click "Save"


Welcome JOE STUDENT

Enrollments Edit Profile	Profile	
First name:	Joe	
Last name:	Student	
Institution:	smartPhysics University	
Email:	JoeStudent@school.edu	
Facebook account:		
Verify change	es by entering your password:	
Save	Cancel	

Enroll in this course

8. Choose the "Enrollments" tab and enter the access key of this course.

Welcome JOE STUDENT

Course Access Key

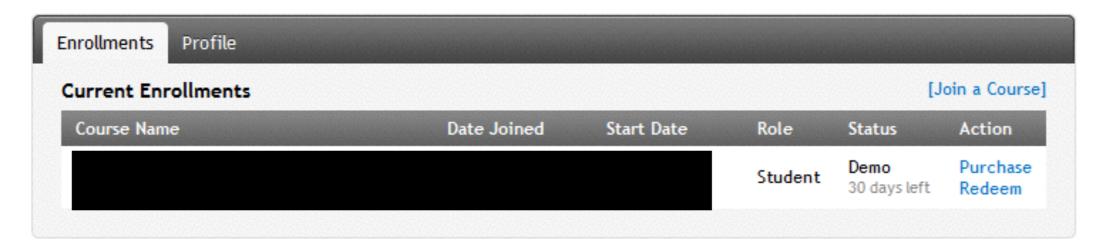
The COURSE ACCESS KEY for this course is:

sfuphys121b

(Case sensitive. SFUPhys121b won't work.)

To be sure: Unique Identifier Format

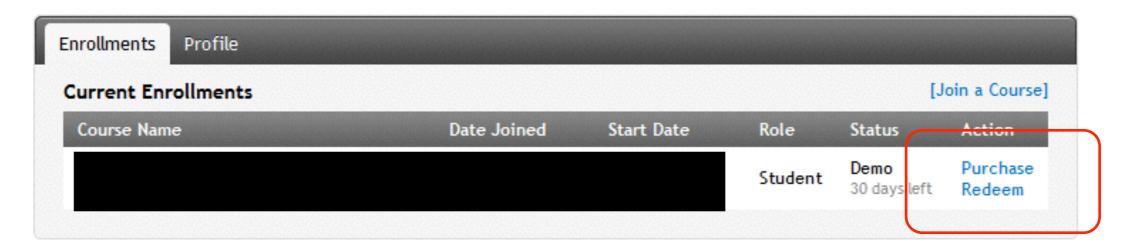
The UNIQUE IDENTIFIER you should use for this course is:


Your SFU email address without @sfu.ca.

Access FlipItPhysics

Congratulations! You are now enrolled in your course!

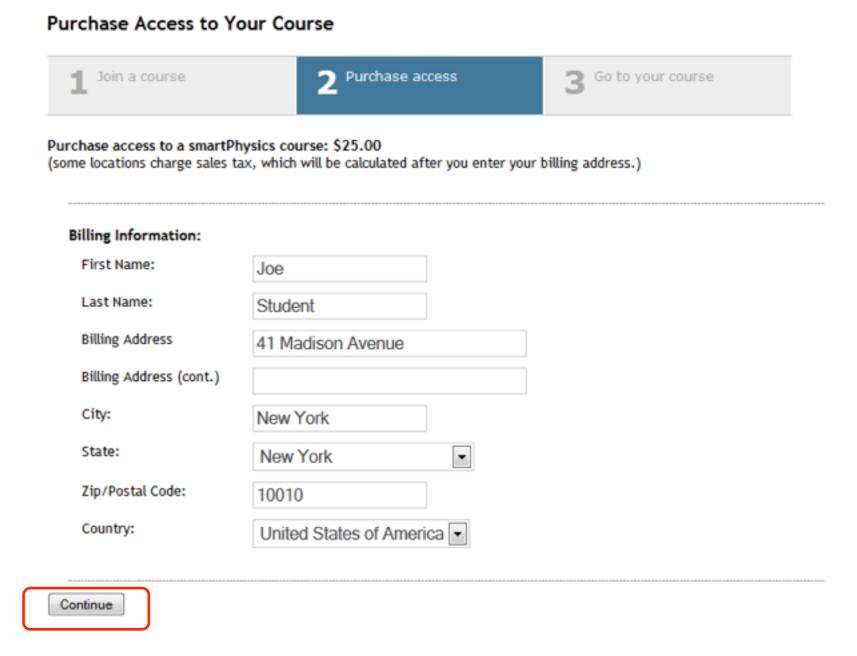
You will be given 21 days before having to purchase access or redeem an access code. This will provide you with a grace period should you drop the course.


Welcome JOE STUDENT

Access FlipItPhysics

After the 21 days (or before, if you'd like), you must either buy access online with a credit card OR redeem an activation code (housed in a printed booklet purchased at the campus bookstore).

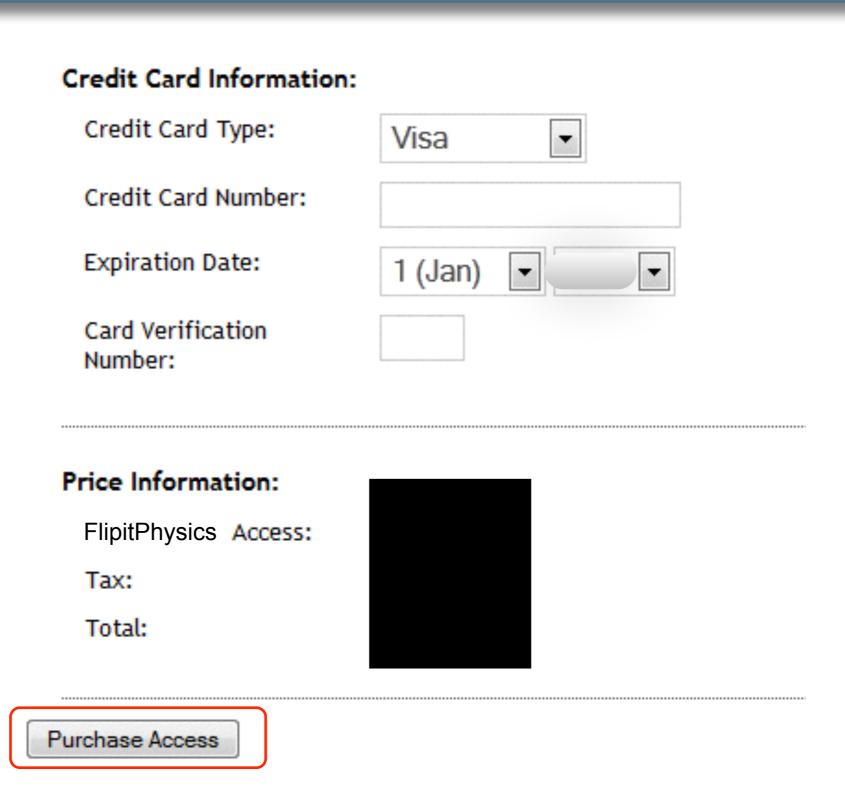
Welcome JOE STUDENT



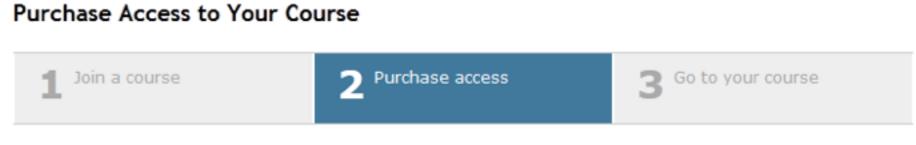
Purchase Access (Online)

From the "Purchase Access" link

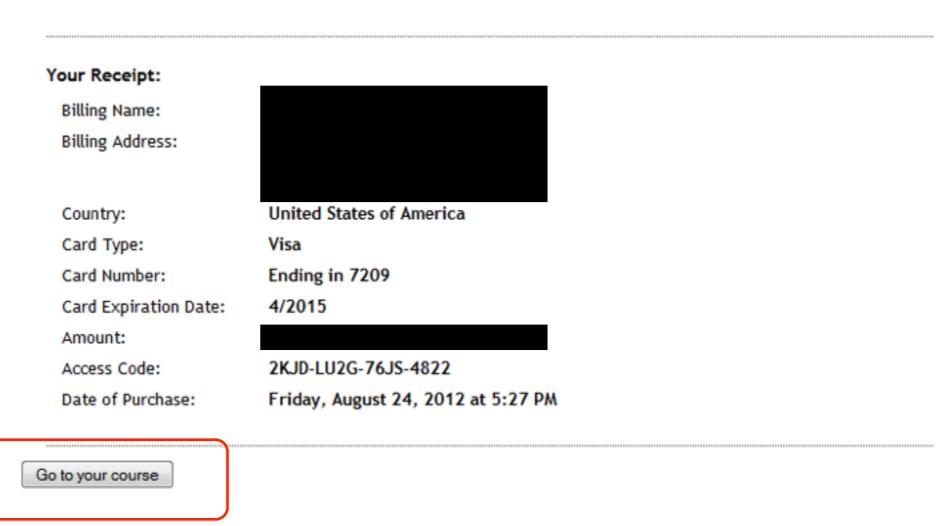
Complete the billing information and click "Continue."


**This is the address in which your credit card bill is sent each month. This is often different than your school address, so please check before entering that information.

Purchase Access (Online)

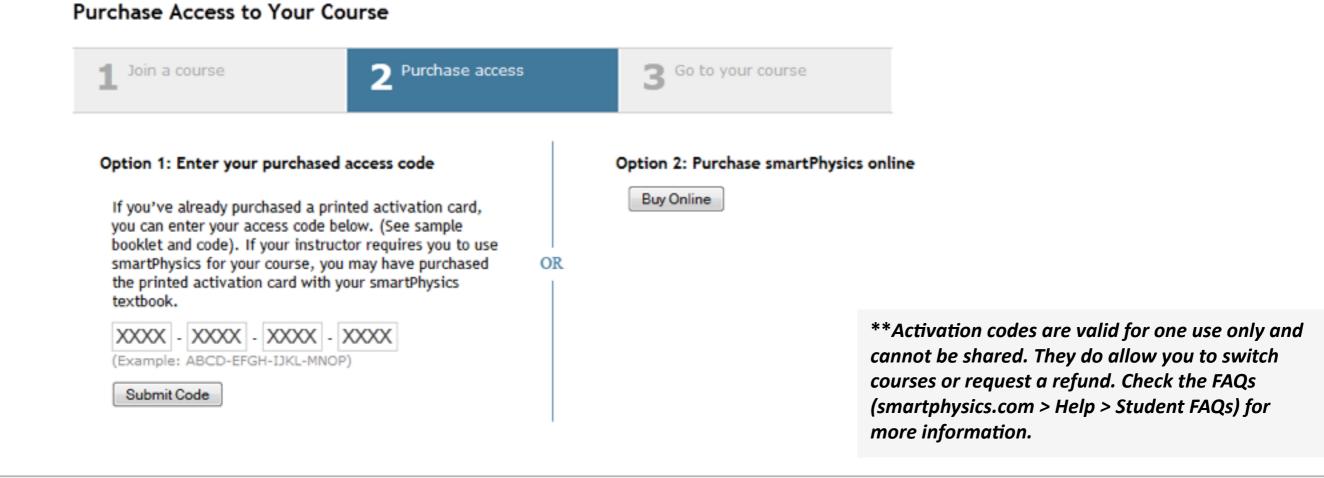

2. Complete the second portion of the online form (credit card information) and click "Purchase Access."

**Depending on your state of residence, you may be subjected to a tax for your online purchase. The system will determine your tax rate based on your billing address.



Purchase Access (Online)

3. You'll be taken to a confirmation page with your purchase details. Click "Go to Course" to return to your course.


Thank you! Your purchase is complete.

Redeem Access (Activation Code)

Your activation code is located inside the booklet.

- 1. Scratch off your code (from your access card booklet) and enter it into the fields on the screen (Option 1 in image below)
- 2. Click "Submit Code" after you've entered the code. Once finished, you can return to your course.

Need live help?

The technical support team is ready and able to help you and is available 7 days a week by

phone and email.

https://macmillan.force.com/macmillanlearning/s/contactsupport

SFU Physics 121 Summer 2020

Simon Fraser University

?

Instructor Links *

Instructor

Student Alberding, Neil

Month View

Download Calendar

Magnetism

AC Circuits

Light and Optics

Calendar URL

Saturday	Friday	Thursday	Wednesday	Tuesday	Monday	Sunday
	May 1	30	29	28	27	26
ç	8	7	6	5	4	3
16	8:00 AM Electric Fields 8:00 AM Electric Fields		8:00 AM Coulomb's Law 8:00 AM Coulomb's Law	12	11	10
23	8:00 AM Gauss' Law 8:00 AM Gauss' Law		8:00 AM Electric Flux and Field 8:00 AM Electric Flux and Field	19	18	17 :59 PM Coulomb's w :59 PM Electric
3(>>>>>>	28	27	26	75	74

Drag assignments here to renthem from the course scheduler - Remove all events - Remove all assignments - Remove all special event + Add new event Electricity (0) DC Circuits (0)

advice

You are encouraged to do the homework **well before** the due date and time.

Emails received by the instructors or TAs just before the deadline will be ignored.

Gradebook of Jane Test

Unit	PreLectures	CheckPoints	Homework
O Score Bar Number Doth			
1) 1-D Kinematics	0%	0%	0%
2) Vectors and 2-D Kinematics	0%	0%	0%
3) Relative and Circular Motion	0%	0%	0%
4) Newton's Laws	0%	0%	0%
5) Forces and Free-Body Diagrams	0%	0%	0%
6) Friction	0%	0%	0%
7) Work and Energy	0%	0%	0%
8) Conservative Forces and Potential Energy	0%	0%	0%
9) Work and Potential Energy: Part II	0%	0%	0%
10) Center of Mass	0%	0%	0%
11) Conservation of Momentum	0%	0%	0%
12) Elastic Collisions	0%	0%	0%
13) Collisions, Impulse, & Reference Frames	0%	0%	0%
14) Rotational Kinematics & Moment of Inertia	0%	0%	0%
15) Parallel-Axis Theorem and Torque	0%	0%	0%
16) Rotational Dynamics	0%	0%	0%
17) Rotational Statics	0%	0%	0%
18) Rotational Statics: Part II	0%	0%	0%
19) Angular Momentum	0%	0%	0%
20) Angular Momentum Vector and Precession	0%	0%	0%

Deadlines

Prelectures

8 am day of lecture up to 7 days late: 80%

Checkpoints

8 am day of lecture no late credit

Homework

II:59 pm Sunday
up to I4 days late: 80%

electures			
Open each assignment:	7 days before deadline		
Default due time:	8:00 AM		
Make delayed feedback available:	On the day of the deadline at 10:00 AM		
Additional deadlines:	None		
heckpoints			
Open each assignment:	7 days before deadline		
Default due time:	8:00 AM		
Make delayed feedback available:	On the day of the deadline at 11:00 AM		
Additional deadlines:	None		
omework			
Open each assignment:	7 days before deadline		
Default due time:	11:59 PM		
Make delayed feedback available:	On the day of the deadline at 1:59 AM		
Additional deadlines:	Deadline #2: 14 days, 0 hours, and 0 minutes after the previous deadline worth 80		

Tutorials

Tuesday and Wednesday

There are 6 sections: D101,D102,D104, D105, 106, D108

Start this week.

Tutorial Activities (problems etc.) count 15% of your mark.

TAs are

Lectures

50 min of uninterrupted excitement Mon, Wed, Fri.

Bring an iClicker: any model, a used one is ok

An extra set of batteries is a good idea.

Register yours in Canvas with its serial number.

registration is retroactive – you'll get the marks you earned from before you registered.

You can also use a smartphone app: iClicker REEF android, iOS

Midterm

90 min long combo of multiple choice (10) & problems (3)

Grading Scheme

WHAT	HOW MUCH
Tutorials	0.15
FlipIt (pre-lectures/homework)	0.15
Midterm Exam	0.3
Final Exam	0.4
TOTAL	1

A point particle of mass m travels freely in the x-direction with uniform velocity v_0 . At x = 0, it enters a region between two plates oriented perpendicular to the y-axis; the plate spacing is w, and then plate length in the x-direction is L. The particle enters on the mid-plane y = 0. While between the plates, it experiences a constant, spatially uniform force F in the +y-direction. After exiting the plates the particle again moves freely.

 v_0 w_0 w_0

Obtain an expression for the **y-coordinate** of the point at which the particle **exits** the plates. We will assume that the plate spacing is wide enough that the particle never strikes either plate. But before we start, consider these possible solutions:

A)
$$y = \frac{F}{m(v_0 + L)}$$
 B) $y = \frac{FL}{mv_0}$ C) $y = \frac{Fw^2}{mv_0^2}$

Could any of them be correct? Why or why not? Remember, **units** and **limiting behavior**!