Electricity & Magnetism Lecture 15

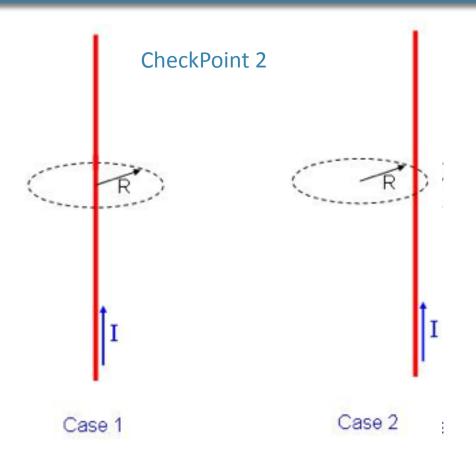
Today's Concept:

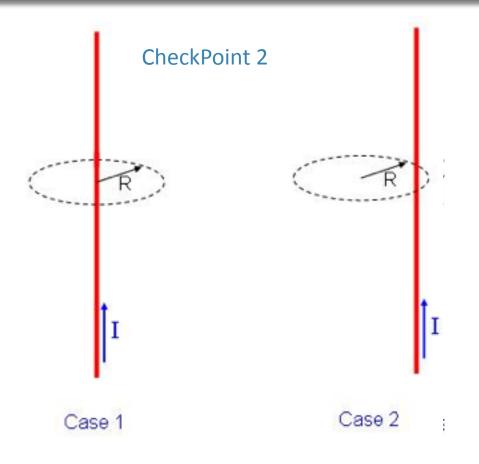
$$\oint \vec{B} \cdot d\vec{\ell} = \mu_o I_{enclosed}$$

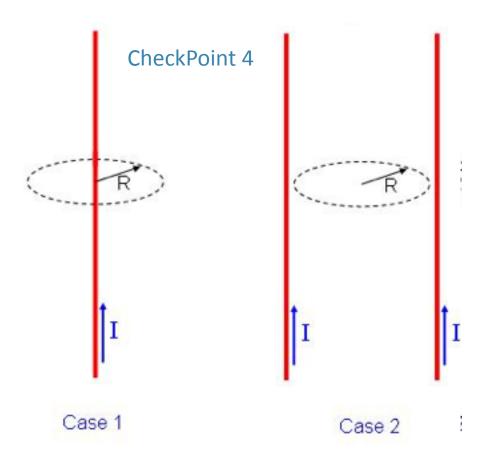
Electricity & Magnetism Lecture 15

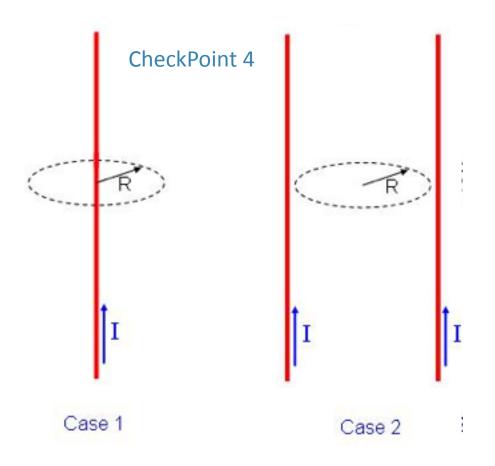
Today's Concept:

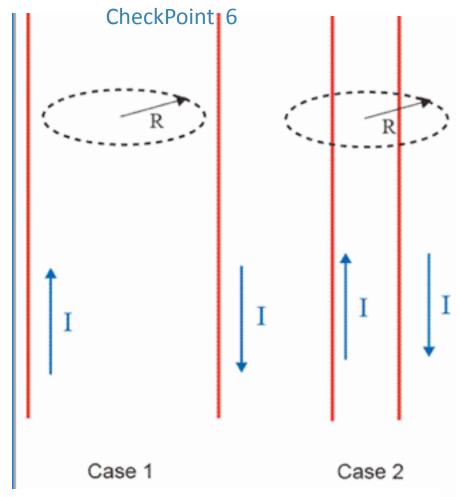
$$\oint \vec{B} \cdot d\vec{\ell} = \mu_o I_{enclosed}$$



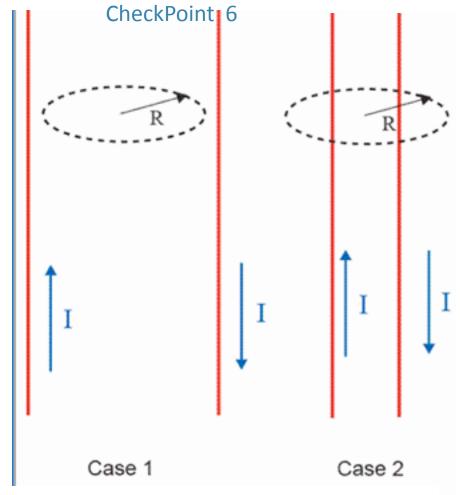








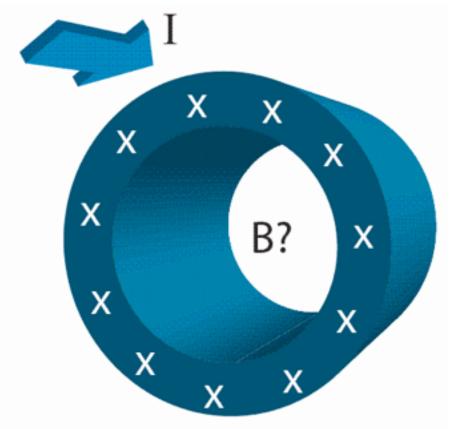
For which loop is $\oint \vec{B} \cdot d\vec{\ell}$ the greatest? A. Case 1 B. Case 2 C. the same



For which loop is $\oint \vec{B} \cdot d\vec{\ell}$ the greatest? A. Case 1 B. Case 2 C. the same

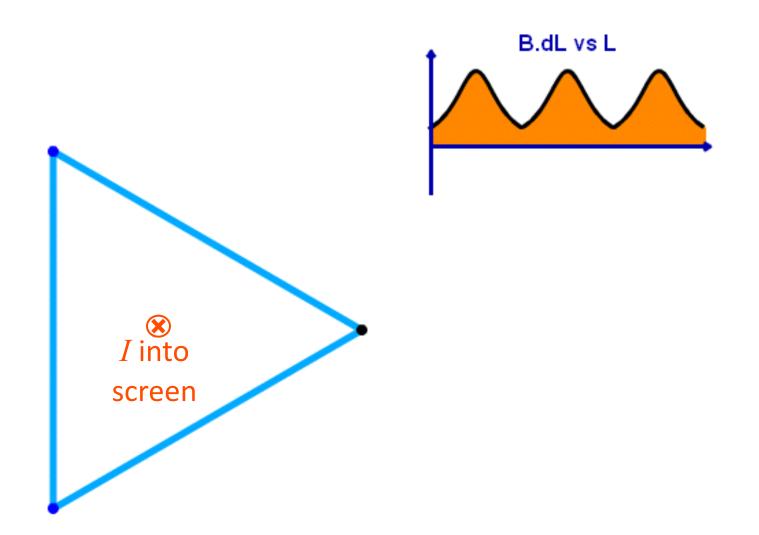
CheckPoint 8

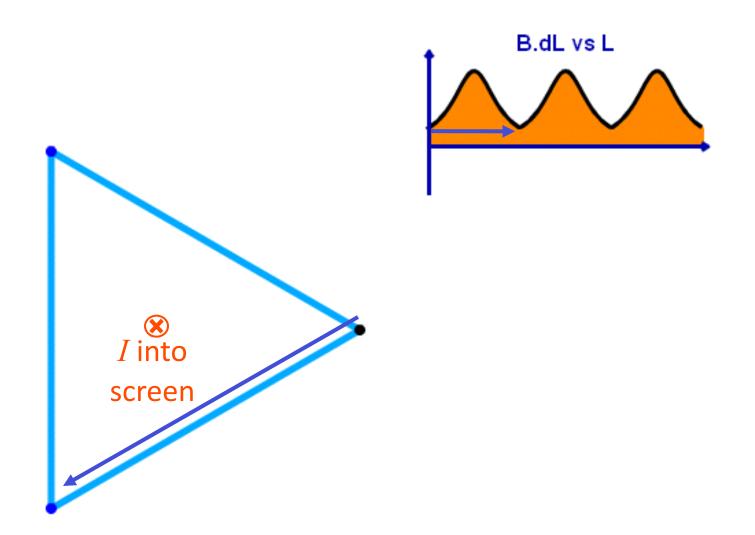
An infinitely long hollow conducting tube carries current I in the direction shown.

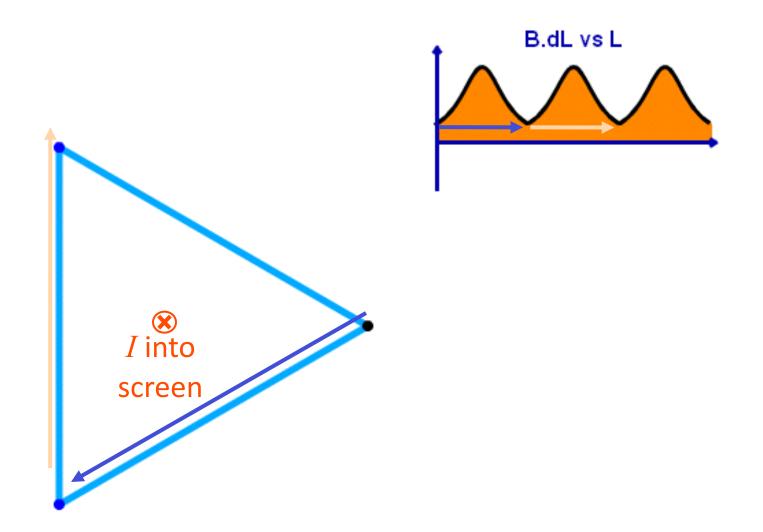


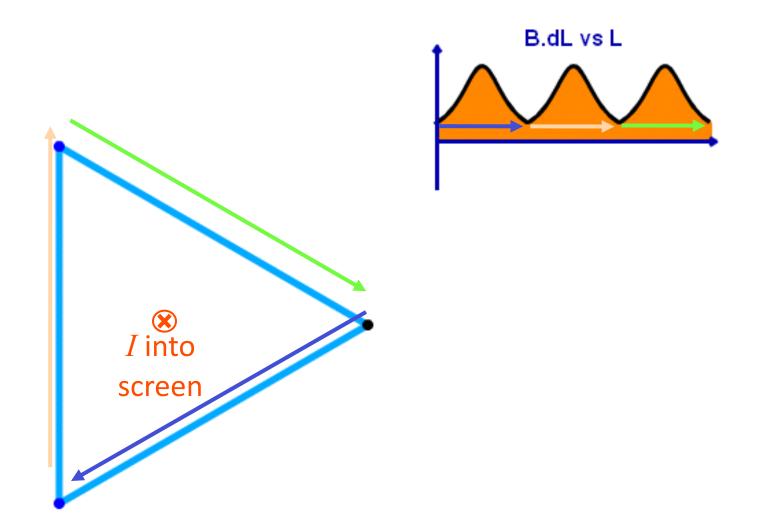
What is the direction of *B* inside the tube?

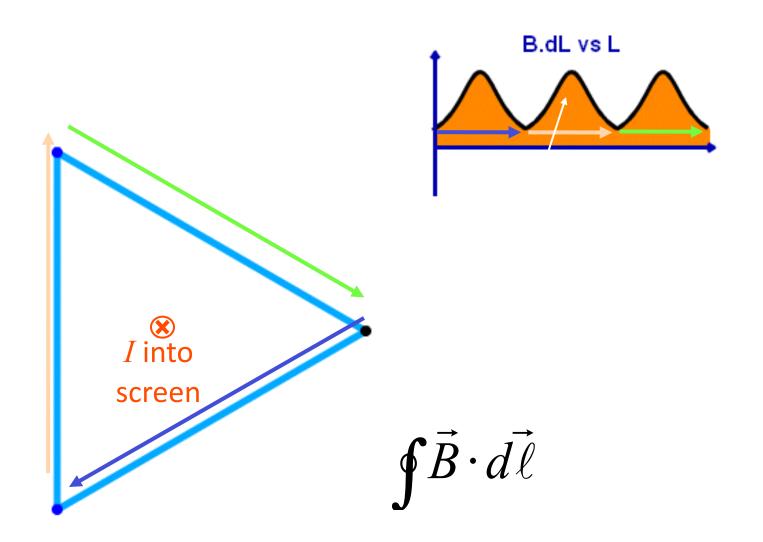
- A) clockwise
- B) counterclockwise
- C) radially inward to the center
- D) radially outward from the center
- E) the magnetic field is zero

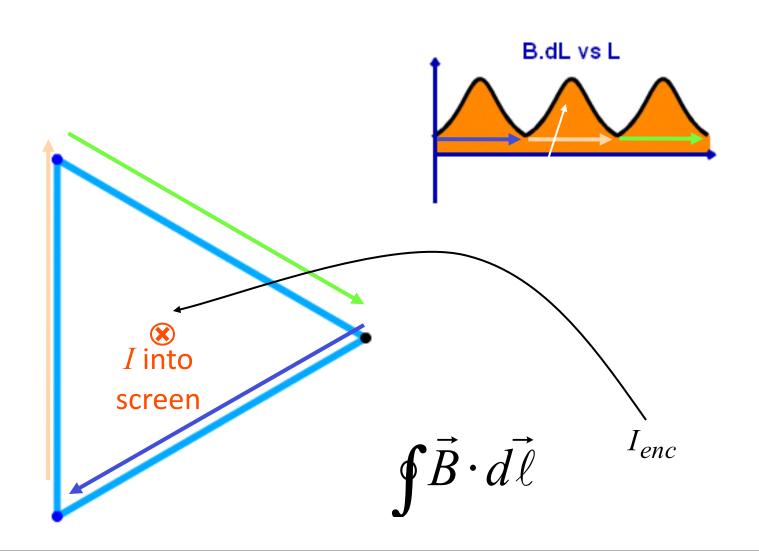




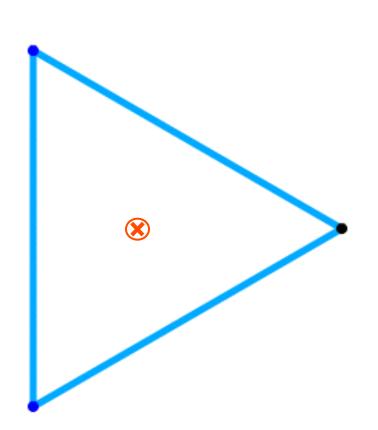


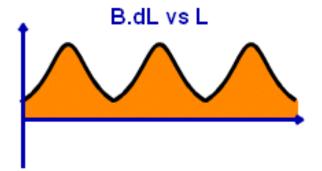




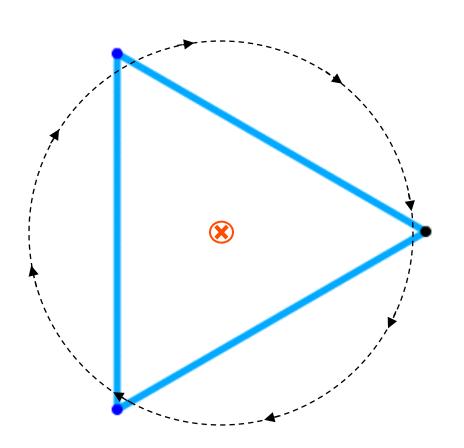


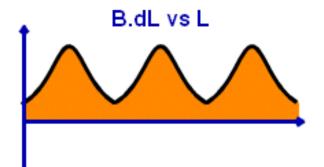
$$\oint \vec{B} \cdot d\vec{\ell} = \mu_o I_{enc}$$

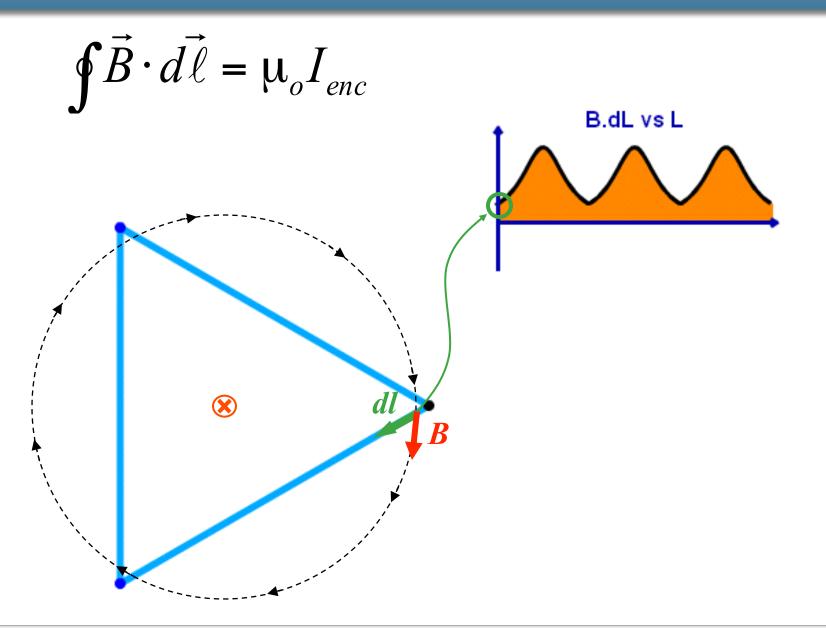


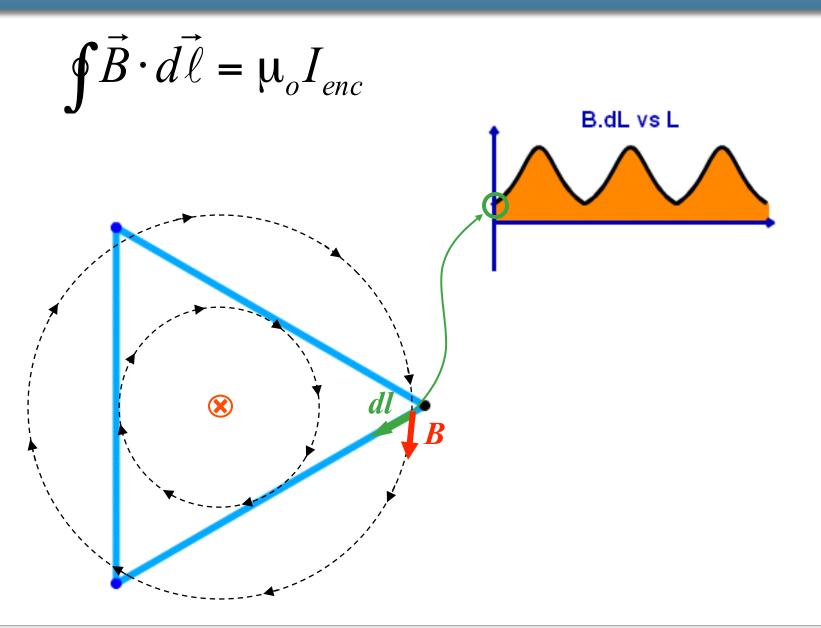


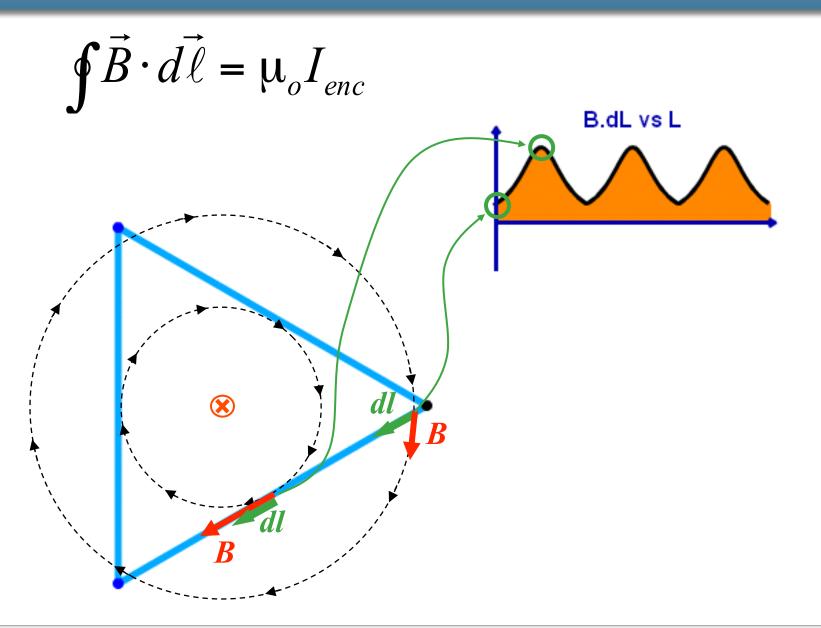
$$\oint \vec{B} \cdot d\vec{\ell} = \mu_o I_{enc}$$

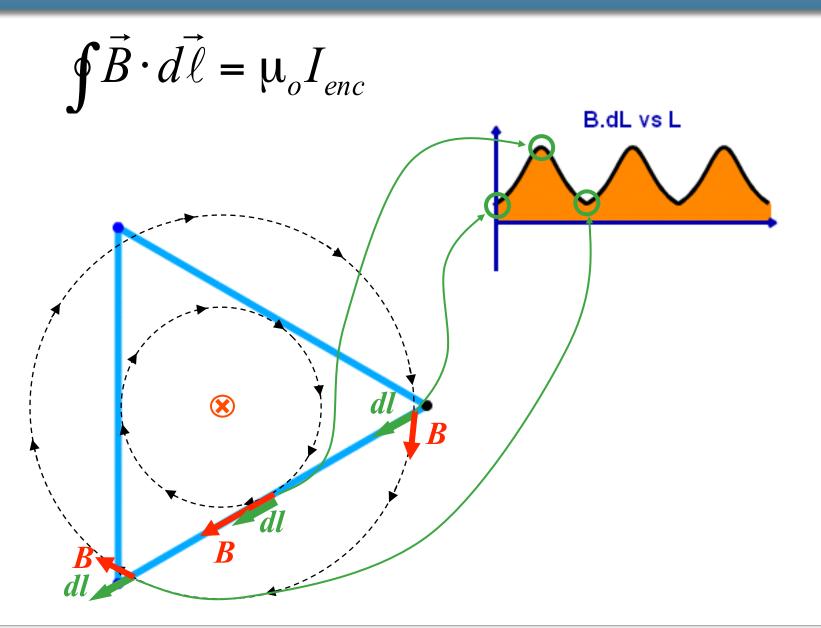


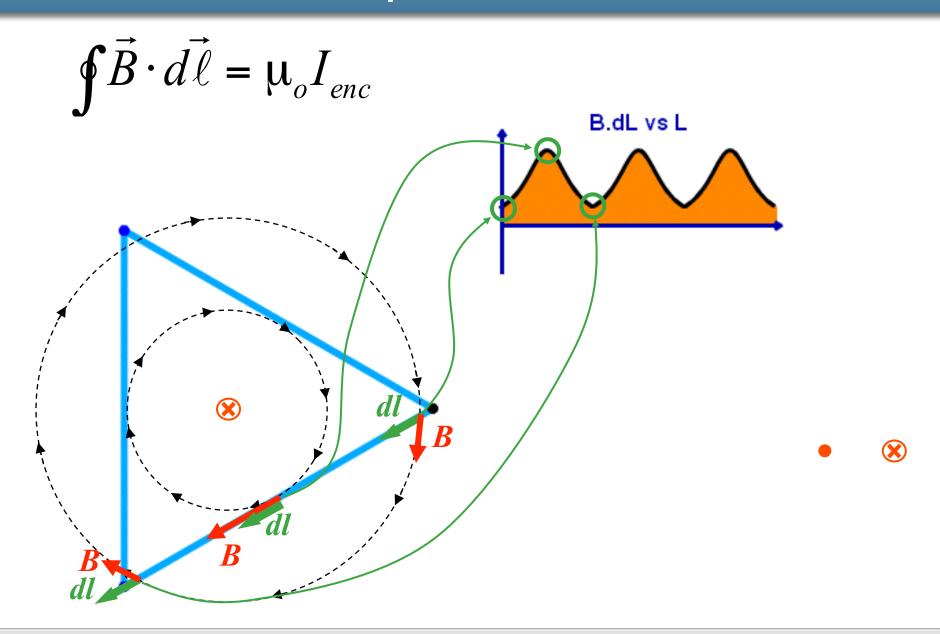


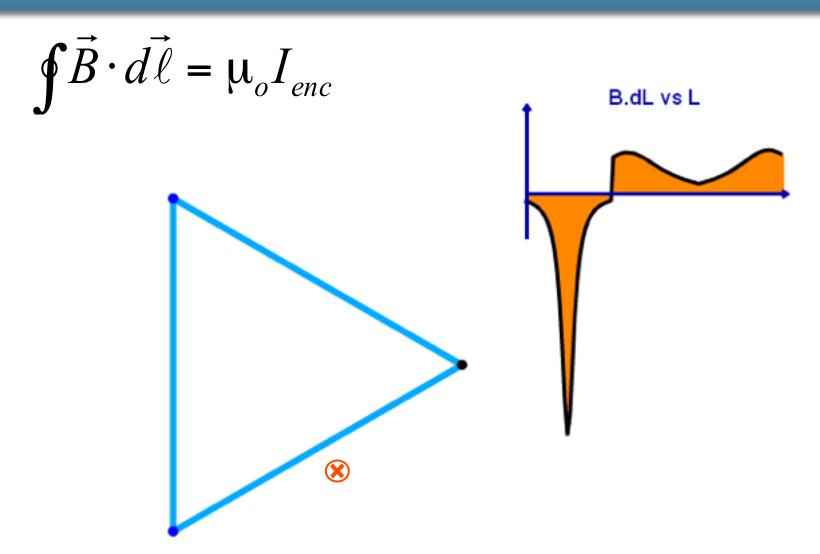


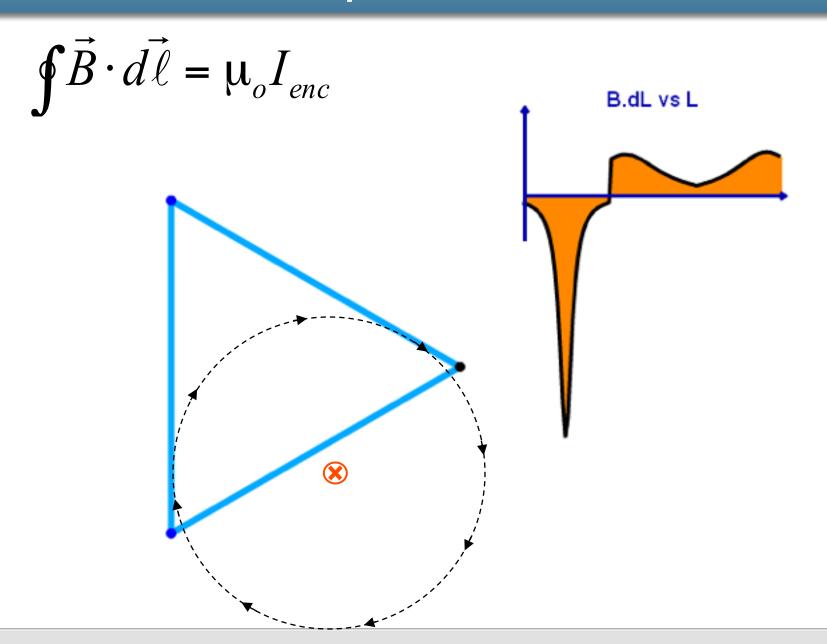


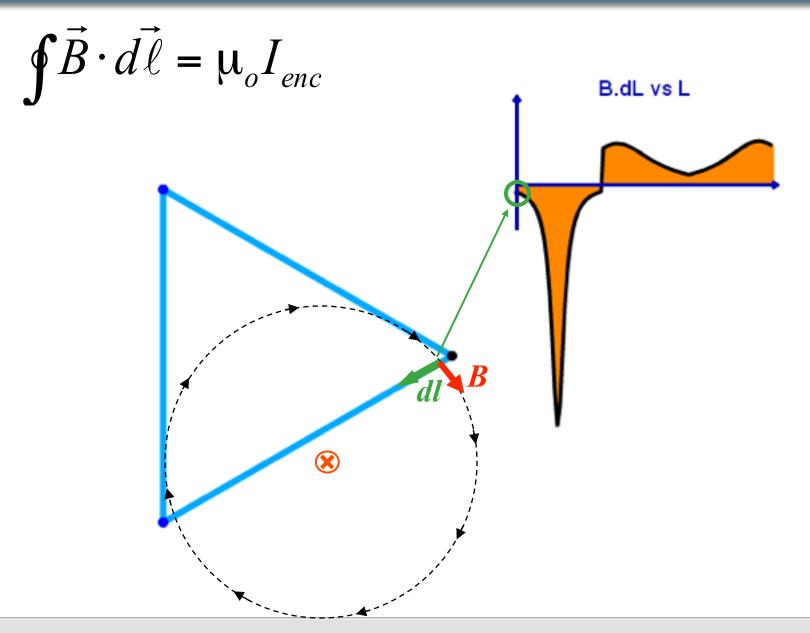


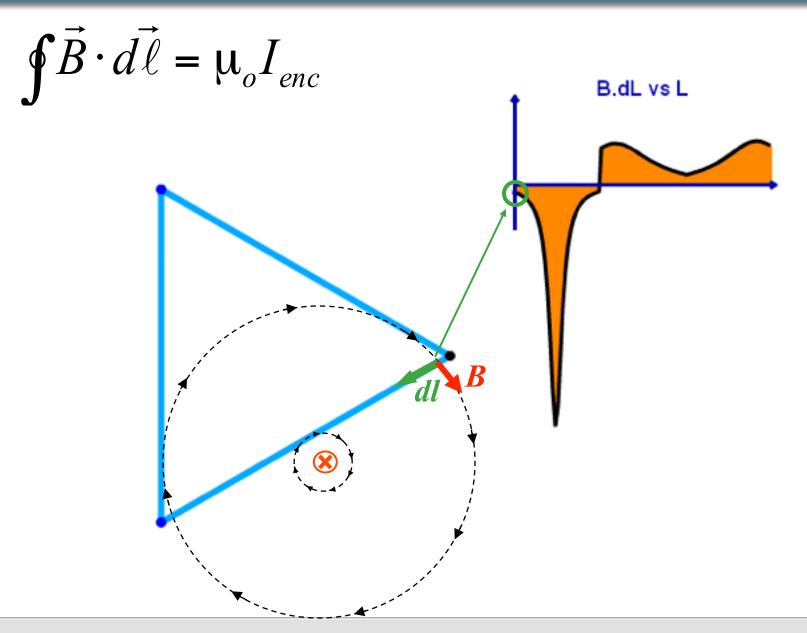




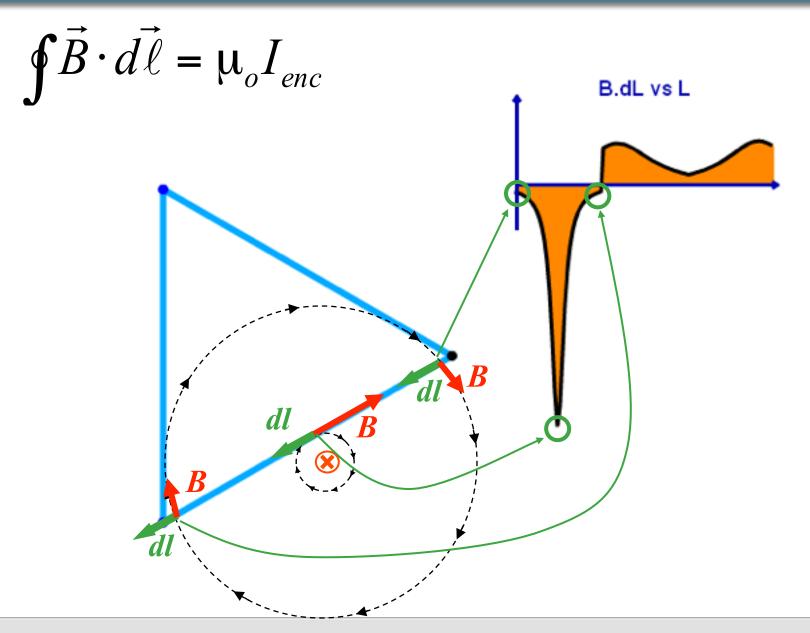


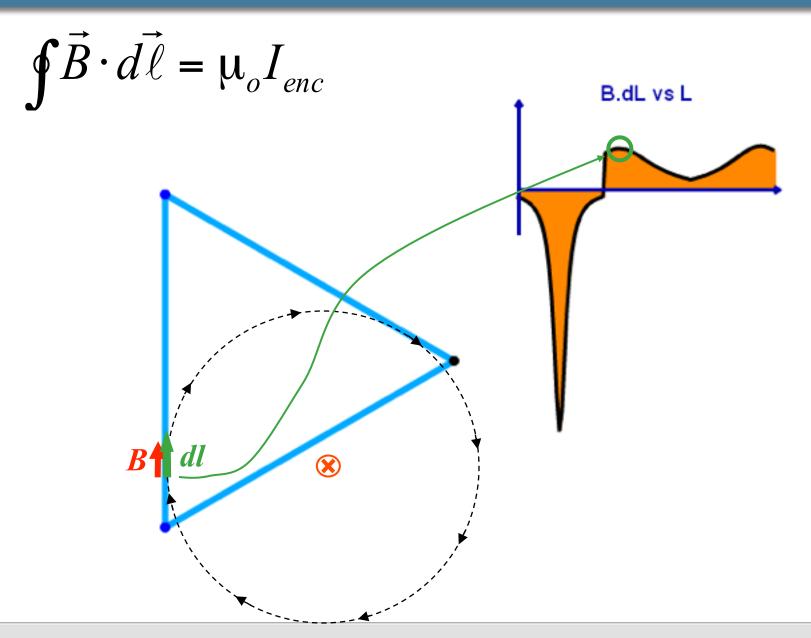




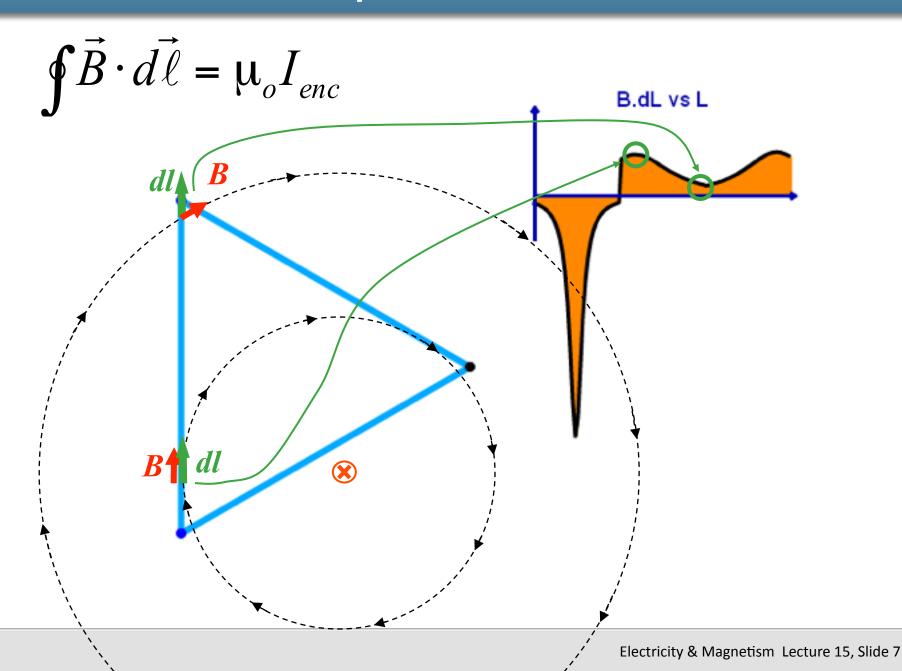


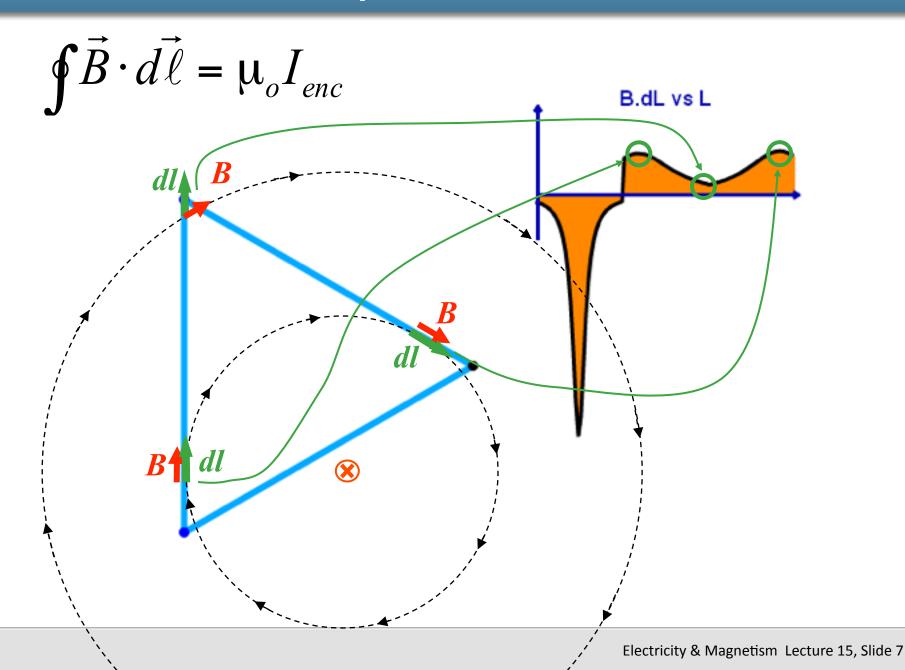




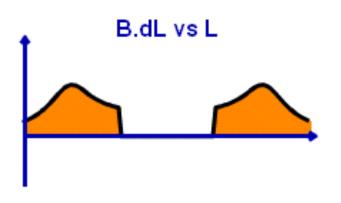


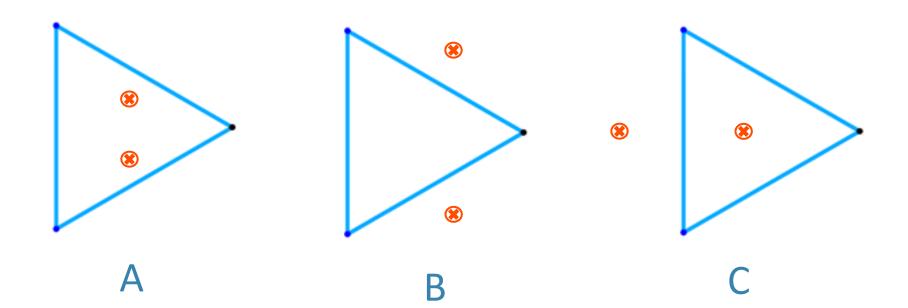




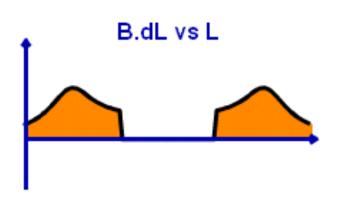


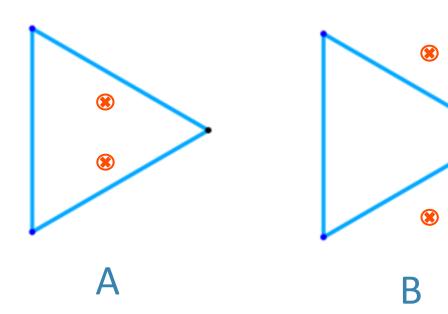
Which of the following current distributions would give rise to the $B \cdot dL$ distribution at the right?

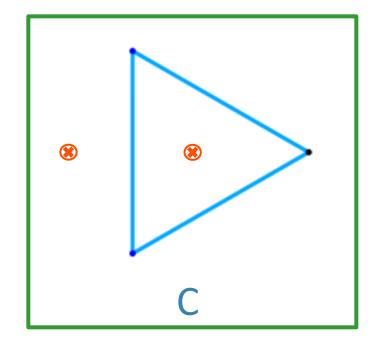


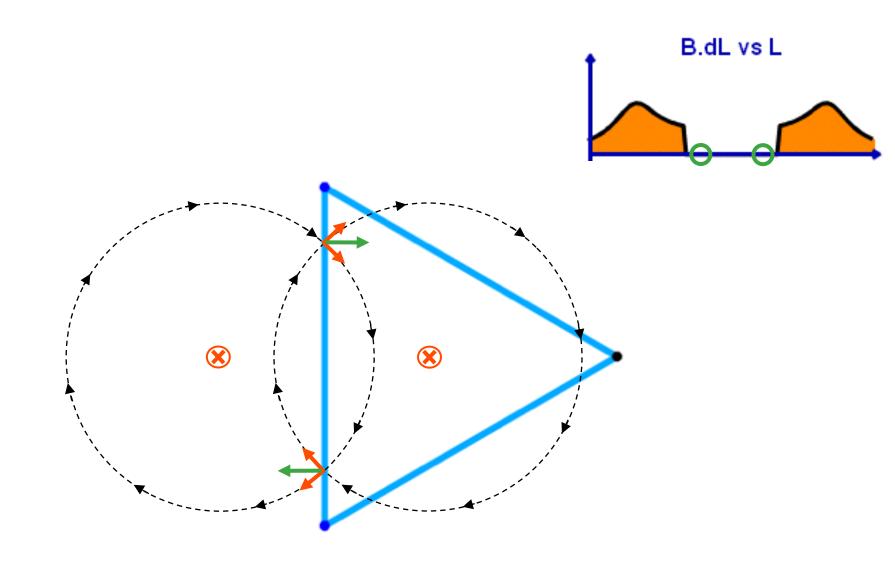


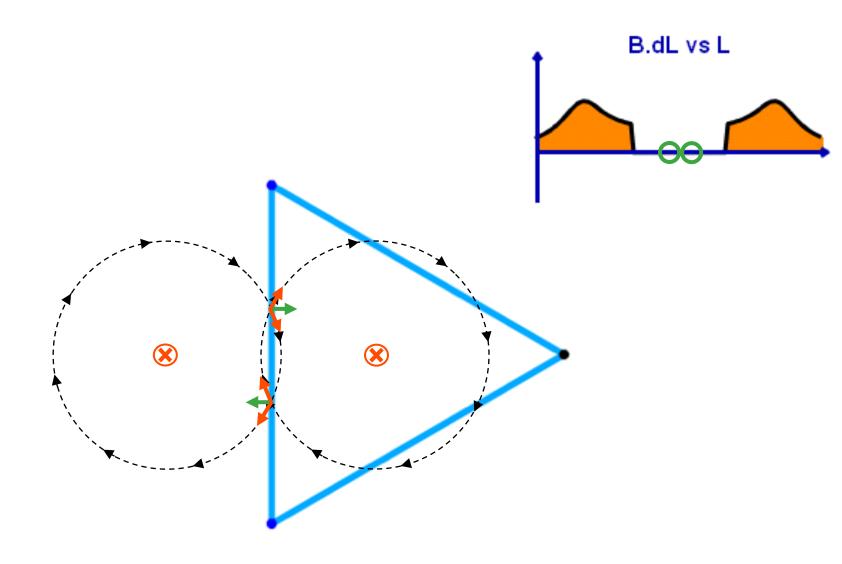
Which of the following current distributions would give rise to the $B \cdot dL$ distribution at the right?

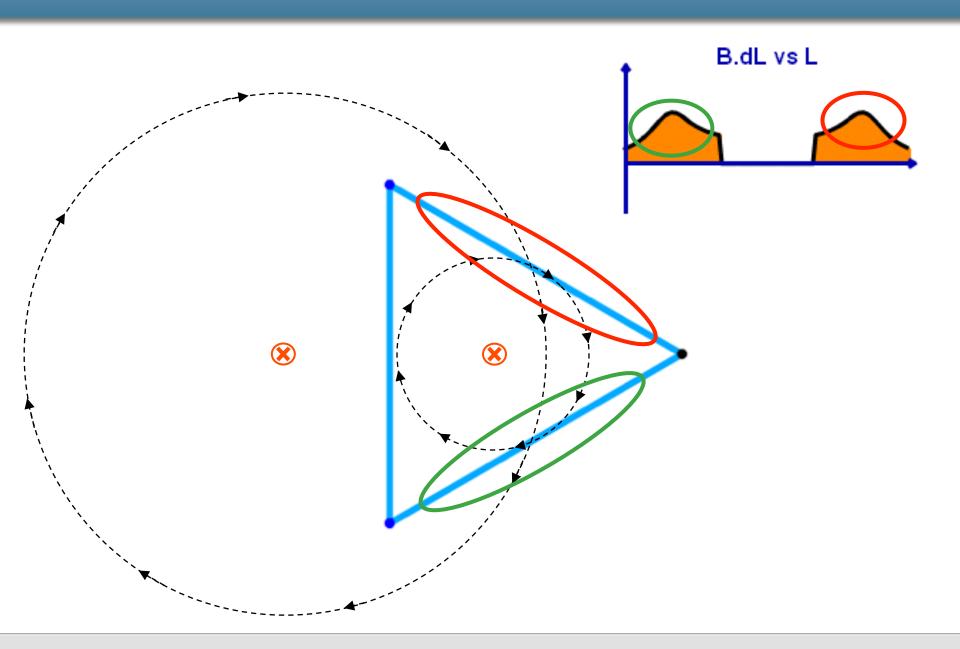




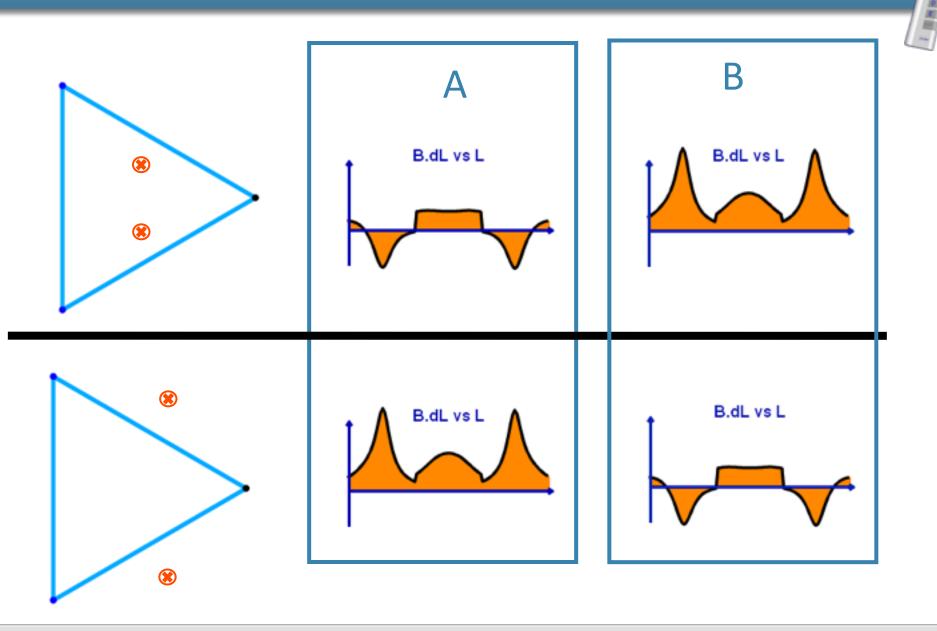




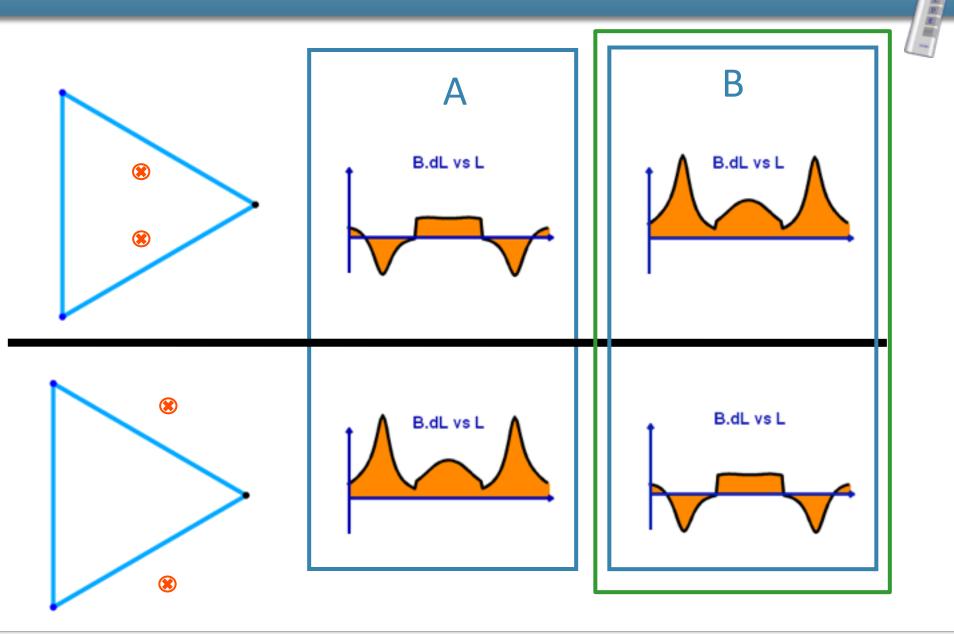




Match the other two:

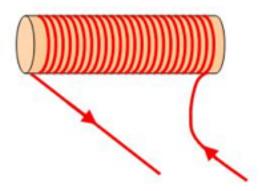


Match the other two:



CheckPoint 10

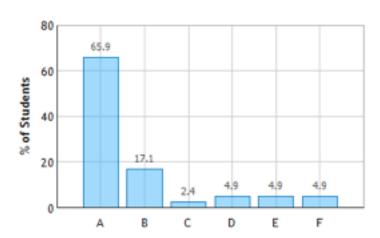
A current carrying wire is wrapped around cardboard tube as shown below.



In which direction does the magnetic field point inside the tube?

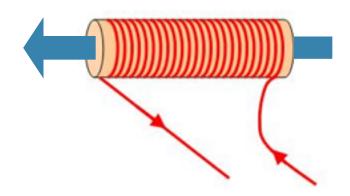
- A) left
- B) right
- C) up
- D) down
- E) out of the screen
- F) into the screen

Magnetic Field Directions: Question 3 (N = 41)



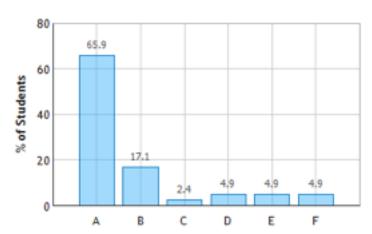
CheckPoint 10

A current carrying wire is wrapped around cardboard tube as shown below.



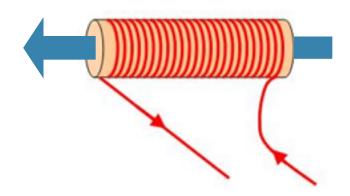
In which direction does the magnetic field point inside the tube?

- A) left
- B) right
- C) up
- D) down
- E) out of the screen
- F) into the screen



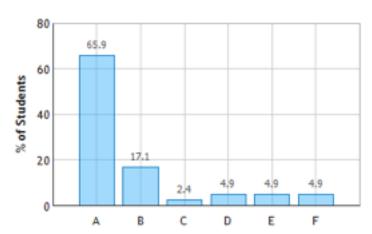
CheckPoint 10

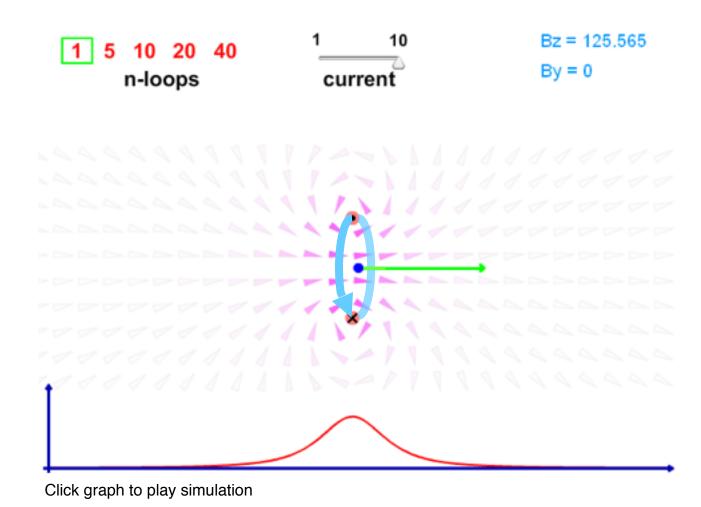
A current carrying wire is wrapped around cardboard tube as shown below.

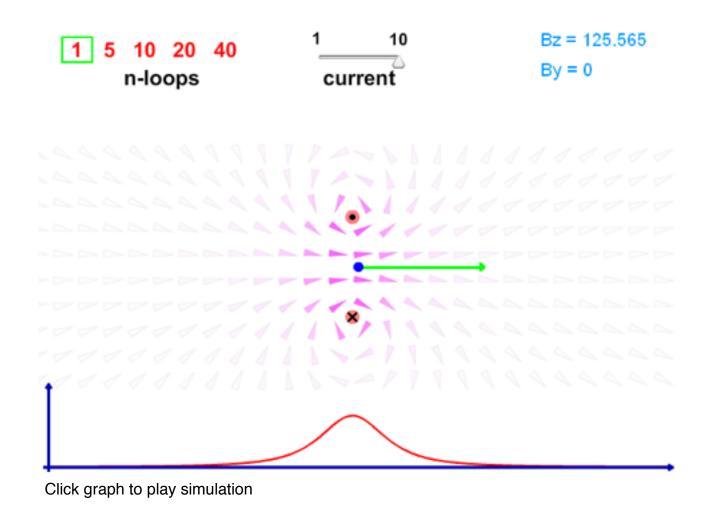


In which direction does the magnetic field point inside the tube?

- A) left
- B) right
- C) up
- D) down
- E) out of the screen
- F) into the screen



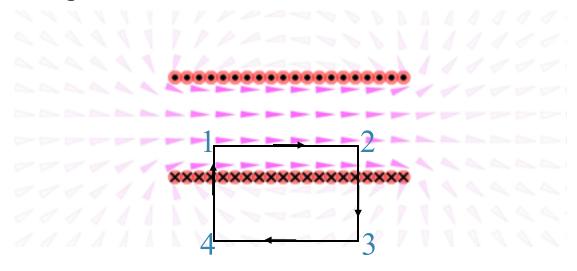




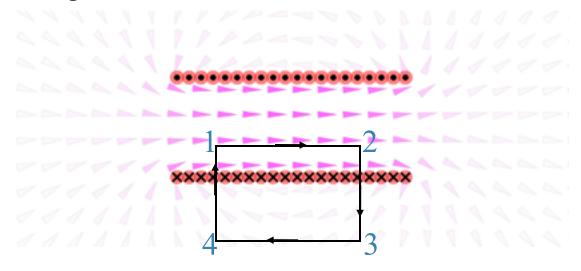
Simulation Applet

http://www.falstad.com/vector3dm/

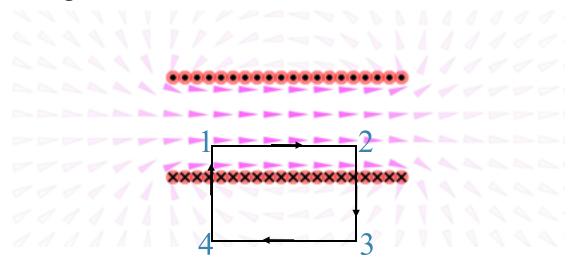
Several loops packed tightly together form a uniform magnetic field inside, and nearly zero magnetic field outside.



Several loops packed tightly together form a uniform magnetic field inside, and nearly zero magnetic field outside.

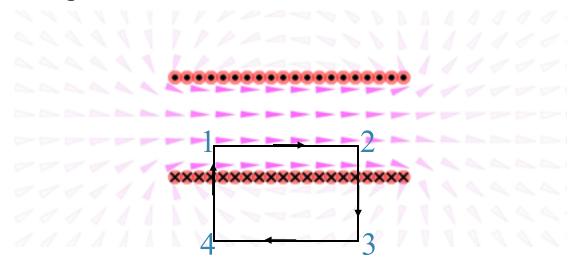


Several loops packed tightly together form a uniform magnetic field inside, and nearly zero magnetic field outside.



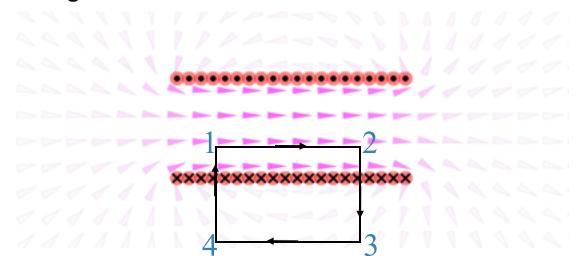
$$\oint \vec{B} \cdot d\vec{\ell} = \mu_o I_{enc}$$

Several loops packed tightly together form a uniform magnetic field inside, and nearly zero magnetic field outside.



$$\oint \vec{B} \cdot d\vec{\ell} = \mu_o I_{enc} \longrightarrow \int_1^2 \vec{B} \cdot d\vec{\ell} + \int_2^3 \vec{B} \cdot d\vec{\ell} + \int_3^4 \vec{B} \cdot d\vec{\ell} + \int_4^1 \vec{B} \cdot d\vec{\ell} = \mu_o I_{enc}$$

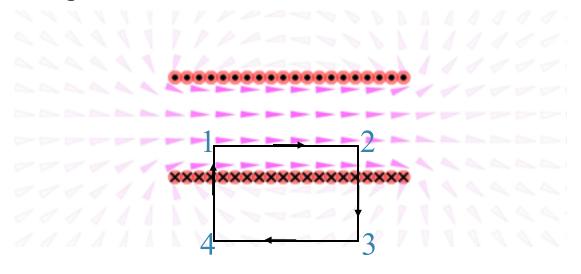
Several loops packed tightly together form a uniform magnetic field inside, and nearly zero magnetic field outside.



$$\oint \vec{B} \cdot d\vec{\ell} = \mu_o I_{enc} \longrightarrow \int_{1}^{2} \vec{B} \cdot d\vec{\ell} + \int_{2}^{3} \vec{B} \cdot d\vec{\ell} + \int_{3}^{4} \vec{B} \cdot d\vec{\ell} + \int_{4}^{1} \vec{B} \cdot d\vec{\ell} = \mu_o I_{enc}$$

$$BL + 0 + 0 + 0 = \mu_o I_{enc}$$

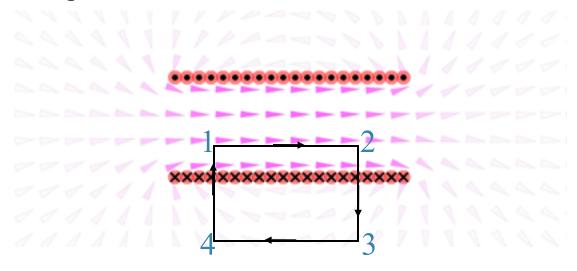
Several loops packed tightly together form a uniform magnetic field inside, and nearly zero magnetic field outside.



$$\oint \vec{B} \cdot d\vec{\ell} = \mu_o I_{enc} \longrightarrow \int_1^2 \vec{B} \cdot d\vec{\ell} + \int_2^3 \vec{B} \cdot d\vec{\ell} + \int_3^4 \vec{B} \cdot d\vec{\ell} + \int_4^1 \vec{B} \cdot d\vec{\ell} = \mu_o I_{enc}$$

$$BL + 0 + 0 + 0 = \mu_o I_{enc} \longrightarrow BL = \mu_o nLI$$

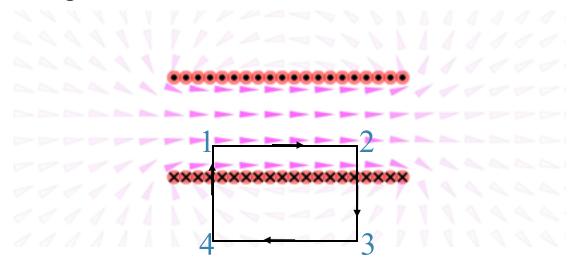
Several loops packed tightly together form a uniform magnetic field inside, and nearly zero magnetic field outside.



$$\oint \vec{B} \cdot d\vec{\ell} = \mu_o I_{enc} \longrightarrow \int_1^2 \vec{B} \cdot d\vec{\ell} + \int_2^3 \vec{B} \cdot d\vec{\ell} + \int_3^4 \vec{B} \cdot d\vec{\ell} + \int_4^1 \vec{B} \cdot d\vec{\ell} = \mu_o I_{enc}$$

$$BL + 0 + 0 + 0 = \mu_o I_{enc} \longrightarrow BL = \mu_o nLI \longrightarrow B = \mu_o nI$$

Several loops packed tightly together form a uniform magnetic field inside, and nearly zero magnetic field outside.

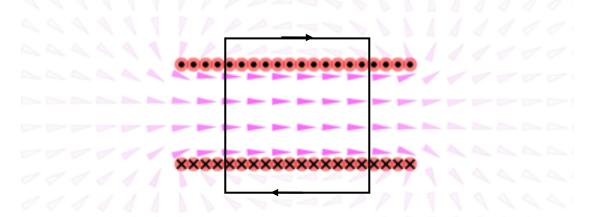


$$\oint \vec{B} \cdot d\vec{\ell} = \mu_o I_{enc} \longrightarrow \int_1^2 \vec{B} \cdot d\vec{\ell} + \int_2^3 \vec{B} \cdot d\vec{\ell} + \int_3^4 \vec{B} \cdot d\vec{\ell} + \int_4^1 \vec{B} \cdot d\vec{\ell} = \mu_o I_{enc}$$

$$BL + 0 + 0 + 0 = \mu_o I_{enc} \longrightarrow BL = \mu_o nLI \longrightarrow B = \mu_o nI$$

$$n = \# \text{ turns/length}$$

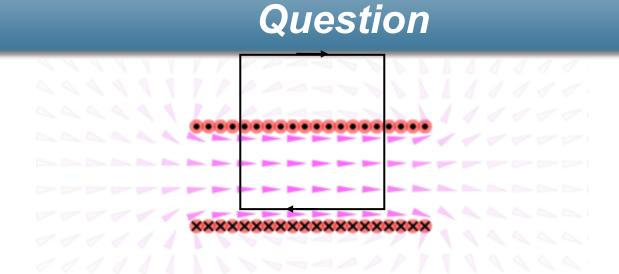
Question



- "Is not B = OT, as drawing a circular path enclosed by the cardboard cylinder contains no current?" In this case both paths are outside the tube
 - Net I-enclosed is zero
 - Integral along all edges is zero too

Question

- "Is not B = OT, as drawing a circular path enclosed by the cardboard cylinder contains no current?" In this case both paths are outside the tube
 - Net I-enclosed is zero
 - Integral along all edges is zero too



"Is not B = 0T, as drawing a circular path enclosed by the cardboard cylinder contains no current?"

In this case both paths are outside the tube

Net I-enclosed is zero

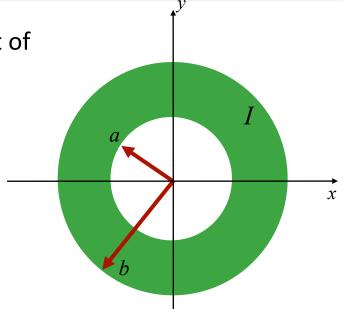
nonzero.

Integral along all edges is zero too

When one edge is inside then there is nonzero *I* enclosed. Integral on the side in the tube is

An infinitely long cylindrical shell with inner radius a and outer radius b carries a uniformly distributed current I out of the screen.

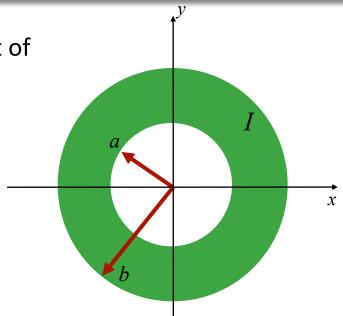
Sketch |B| as a function of r.



An infinitely long cylindrical shell with inner radius a and outer radius b carries a uniformly distributed current I out of the screen.

Sketch |B| as a function of r.

Conceptual Analysis

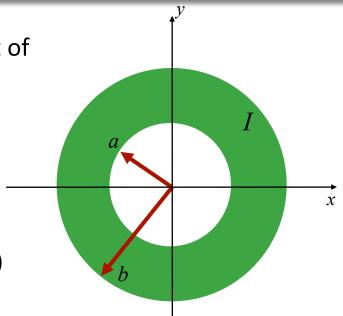


An infinitely long cylindrical shell with inner radius a and outer radius b carries a uniformly distributed current I out of the screen.

Sketch |B| as a function of r.

Conceptual Analysis

Complete cylindrical symmetry (can only depend on r) \Rightarrow can use Ampere's law to calculate B



An infinitely long cylindrical shell with inner radius a and outer radius b carries a uniformly distributed current I out of the screen.

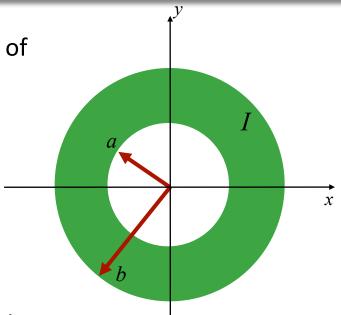
Sketch |B| as a function of r.

Conceptual Analysis

Complete cylindrical symmetry (can only depend on r)

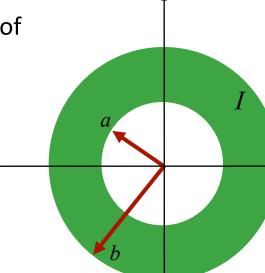
 \Rightarrow can use Ampere's law to calculate B

B field can only be clockwise, counterclockwise or zero!



An infinitely long cylindrical shell with inner radius a and outer radius b carries a uniformly distributed current I out of the screen.

Sketch |B| as a function of r.



Conceptual Analysis

Complete cylindrical symmetry (can only depend on r) \Rightarrow can use Ampere's law to calculate B

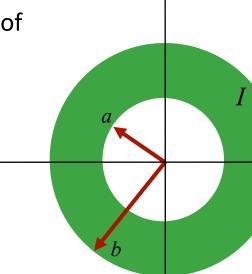
B field can only be clockwise, counterclockwise or zero!

$$\oint \vec{B} \cdot d\vec{\ell} = \mu_o I_{enc}$$

$$B \oint d\ell = \mu_o I_{enc}$$
 For circular path concentric with shell.

An infinitely long cylindrical shell with inner radius a and outer radius b carries a uniformly distributed current I out of the screen.

Sketch |B| as a function of r.



Conceptual Analysis

Complete cylindrical symmetry (can only depend on r)

 \Rightarrow can use Ampere's law to calculate B

B field can only be clockwise, counterclockwise or zero!

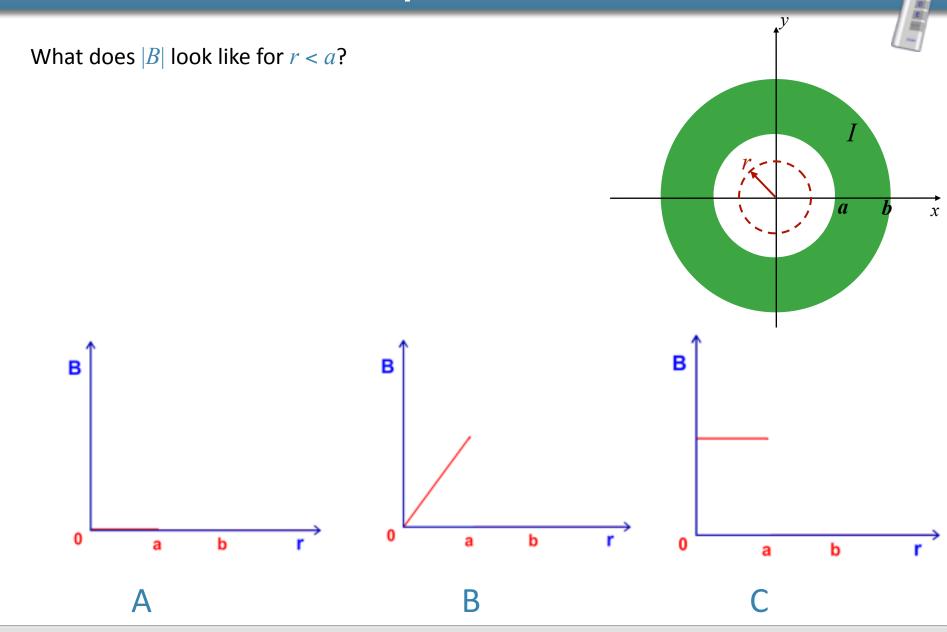
$$\oint \vec{B} \cdot d\vec{\ell} = \mu_o I_{enc}$$

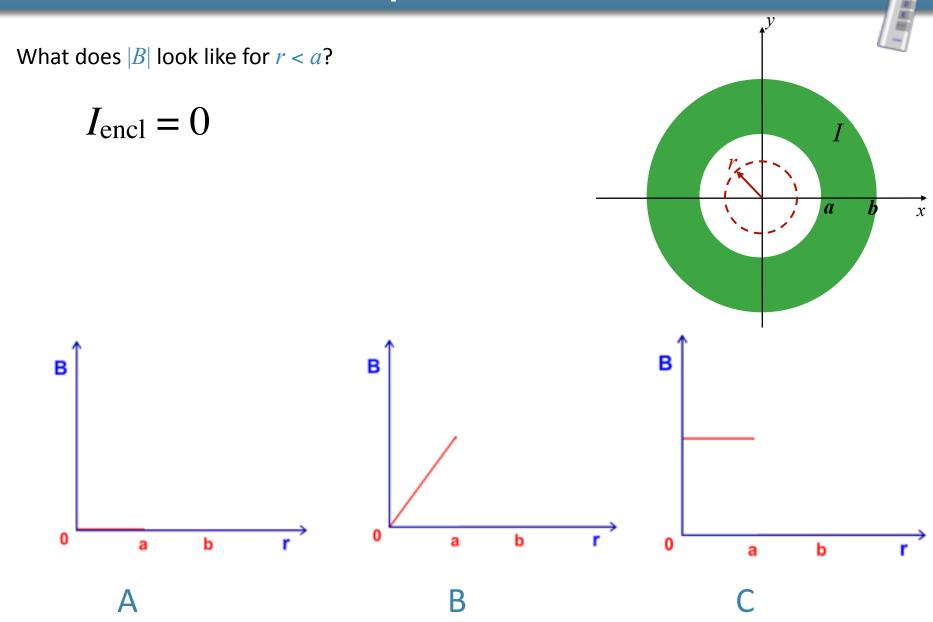
 $B \oint d\ell = \mu_o I_{enc}$ For circular path concentric with shell.

Strategic Analysis

Calculate B for the three regions separately:

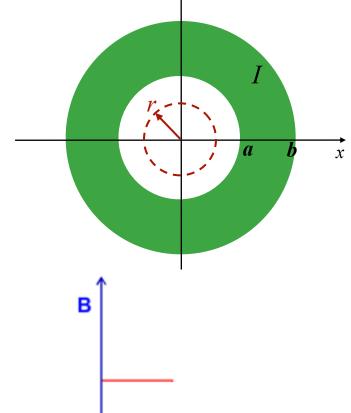
- 1) r < a
- $2) \qquad a < r < b$
- r > b

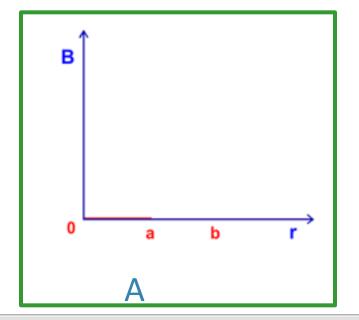


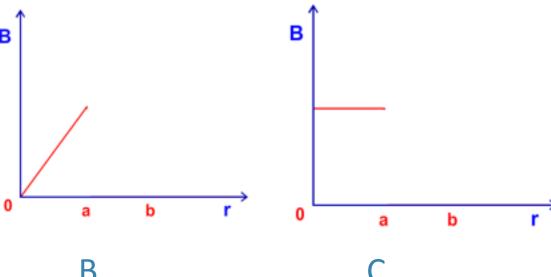


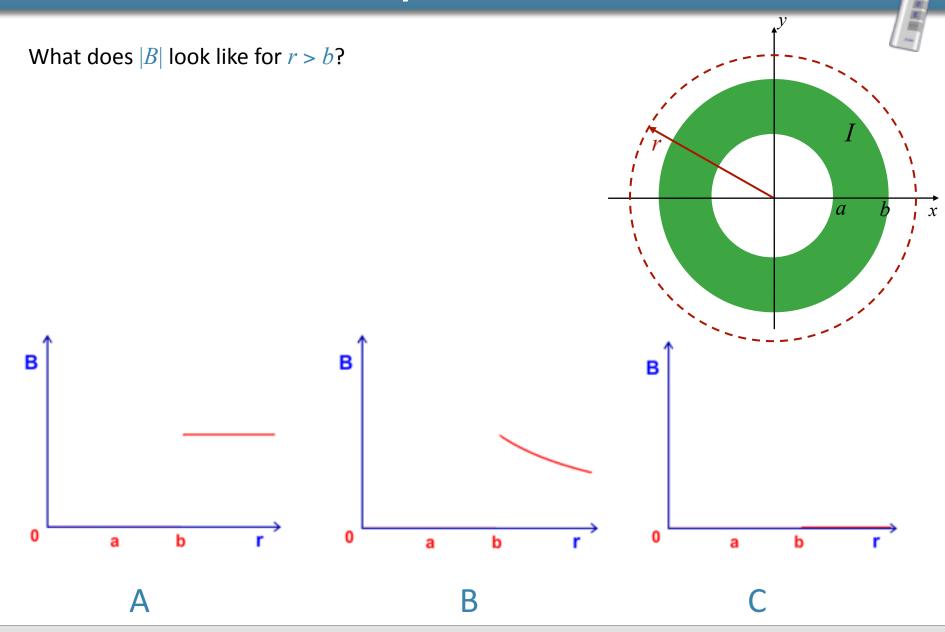
What does |B| look like for r < a?

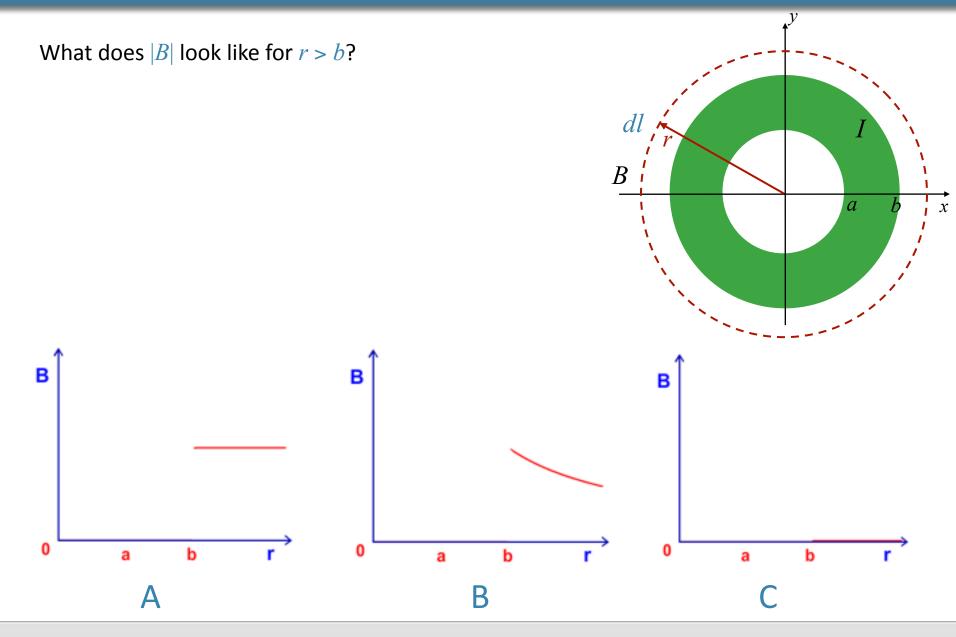
$$I_{\text{encl}} = 0$$

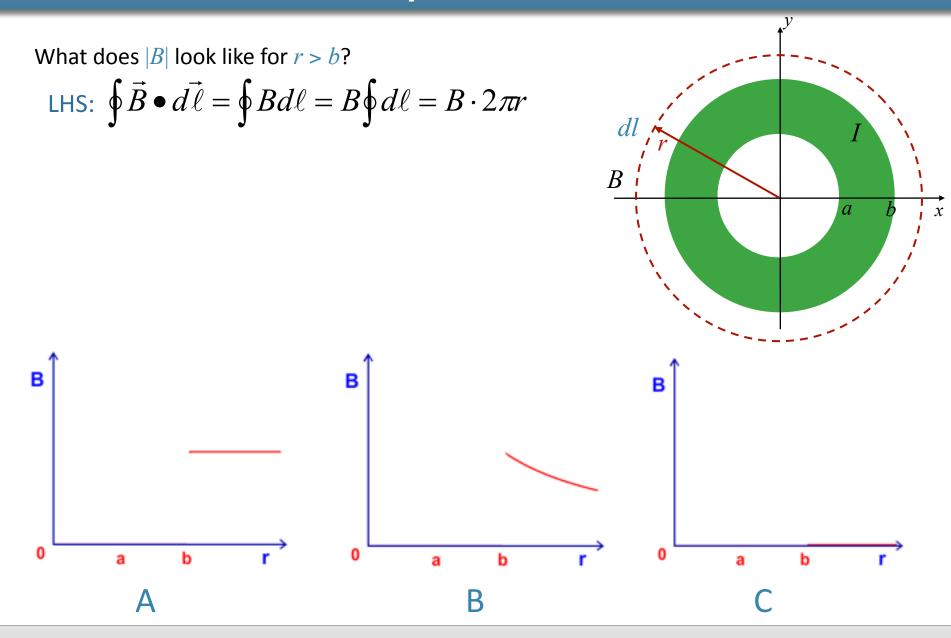








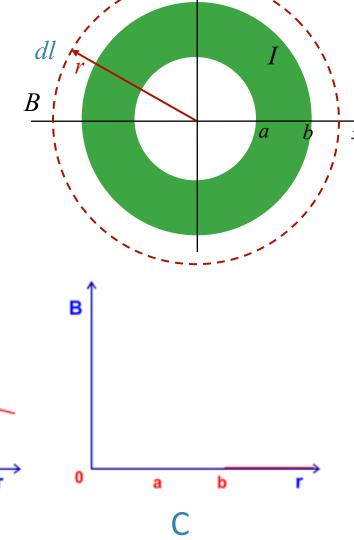


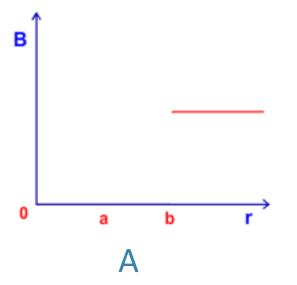


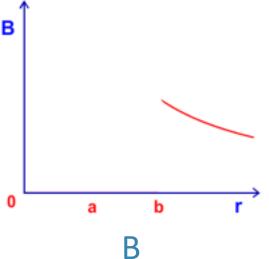
What does |B| look like for r > b?

LHS:
$$\oint \vec{B} \cdot d\vec{\ell} = \oint B d\ell = B \oint d\ell = B \cdot 2\pi r$$

RHS: $I_{enclosed} = I$





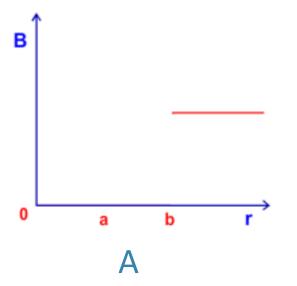


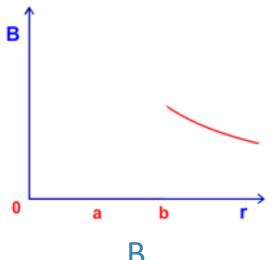
What does |B| look like for r > b?

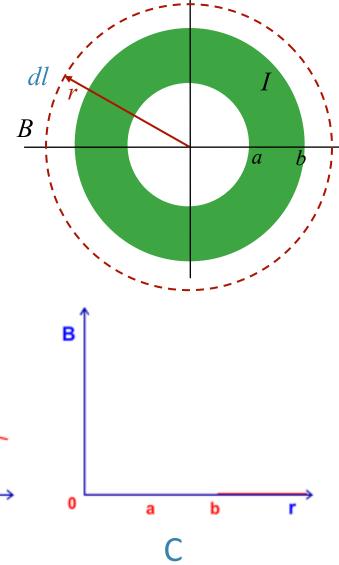
LHS:
$$\oint \vec{B} \cdot d\vec{\ell} = \oint B d\ell = B \oint d\ell = B \cdot 2\pi r$$

RHS:
$$I_{enclosed} = I$$

$$B = \frac{\mu_o I}{2\pi r}$$





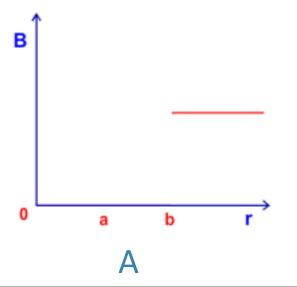


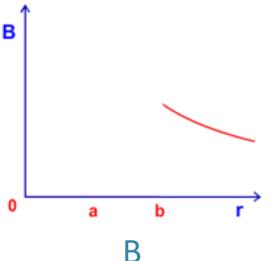
What does |B| look like for r > b?

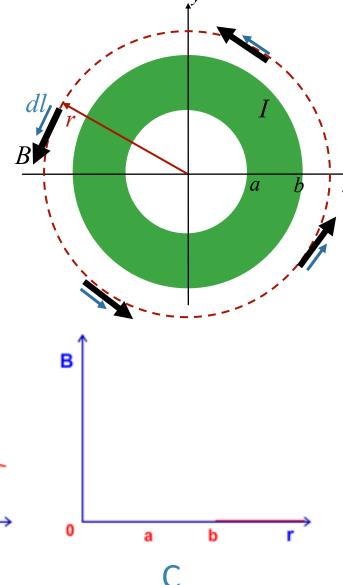
LHS:
$$\oint \vec{B} \cdot d\vec{\ell} = \oint Bd\ell = B \oint d\ell = B \cdot 2\pi r$$

RHS:
$$I_{enclosed} = I$$

$$B = \frac{\mu_o I}{2\pi r}$$



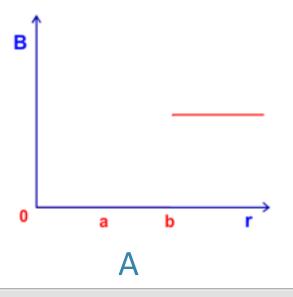


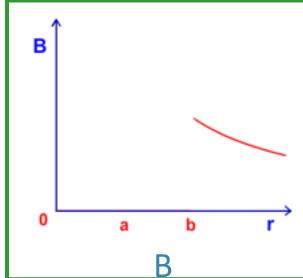


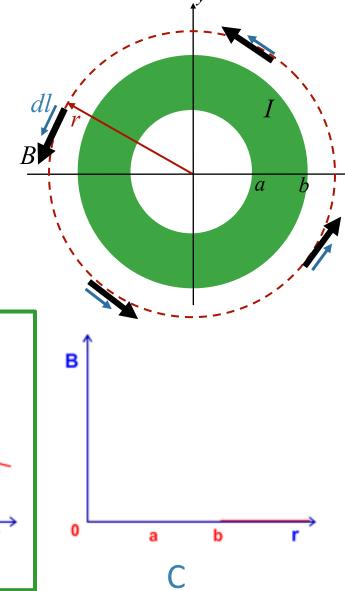
What does |B| look like for r > b?

LHS:
$$\oint \vec{B} \cdot d\vec{\ell} = \oint B d\ell = B \oint d\ell = B \cdot 2\pi r$$

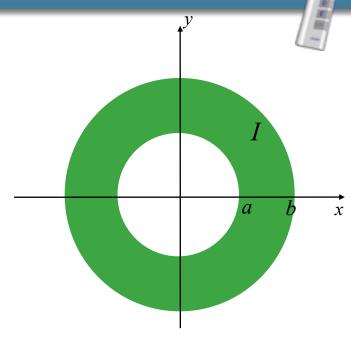
RHS:
$$I_{enclosed} = I$$







What is the current density j (Amp/m²) in the conductor?

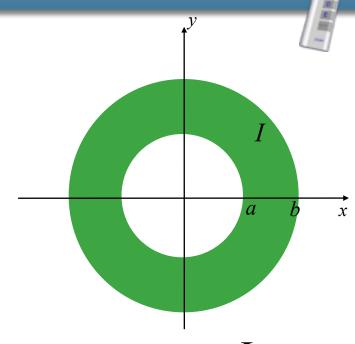


$$j = \frac{I}{\pi h^2}$$

B)
$$j = \frac{I}{\pi b^2 + \pi a^2}$$

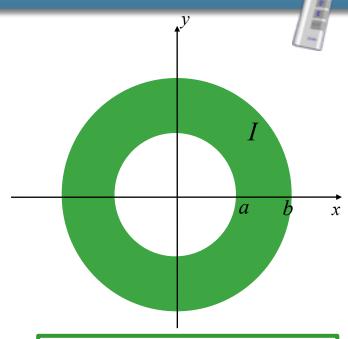
A)
$$j = \frac{I}{\pi b^2}$$
 B) $j = \frac{I}{\pi b^2 + \pi a^2}$ C) $j = \frac{I}{\pi b^2 - \pi a^2}$

What is the current density j (Amp/m²) in the conductor?



A)
$$j = \frac{I}{\pi b^2}$$
 B) $j = \frac{I}{\pi b^2 + \pi a^2}$ C) $j = \frac{I}{\pi b^2 - \pi a^2}$ $j = I/area$ $area = \pi b^2 - \pi a^2$

What is the current density j (Amp/m²) in the conductor?



$$j = \frac{I}{\pi h^2}$$

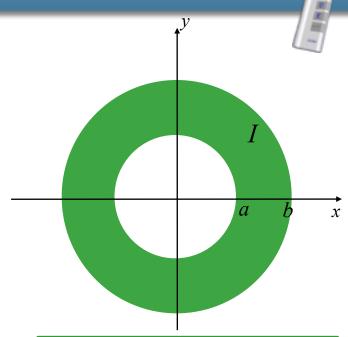
$$j = \frac{I}{\pi b^2 + \pi a^2}$$

$$j = \frac{I}{\pi b^2}$$
 B) $j = \frac{I}{\pi b^2 + \pi a^2}$ C) $j = \frac{I}{\pi b^2 - \pi a^2}$

$$j = I / area$$

$$area = \pi b^2 - \pi a^2$$

What is the current density j (Amp/m²) in the conductor?



$$j = \frac{I}{\pi h^2}$$

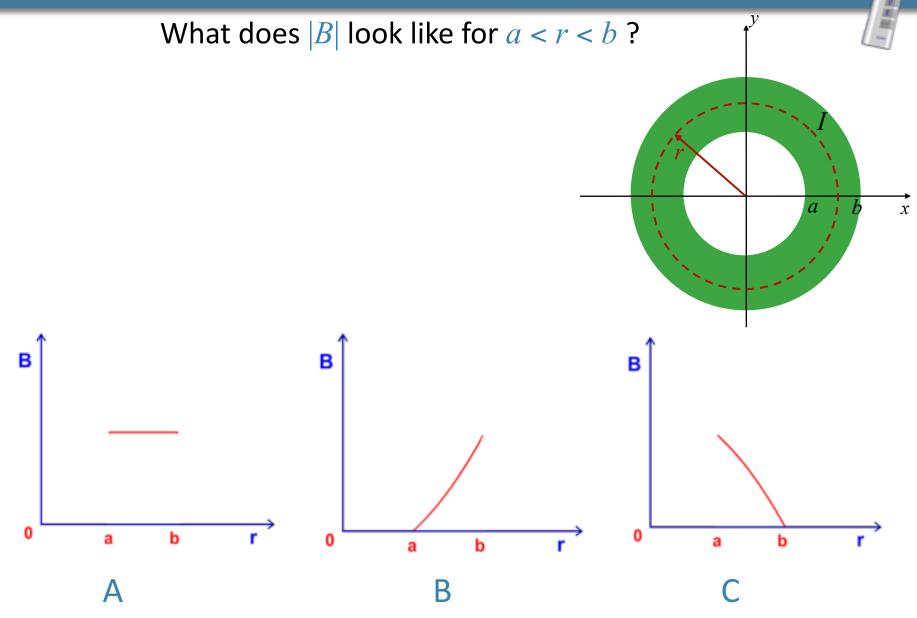
$$j = \frac{1}{\pi b^2 + \pi a^2}$$

$$j = \frac{I}{\pi b^2}$$
 B) $j = \frac{I}{\pi b^2 + \pi a^2}$ C) $j = \frac{I}{\pi b^2 - \pi a^2}$

$$j = I / area$$

$$area = \pi b^2 - \pi a^2$$

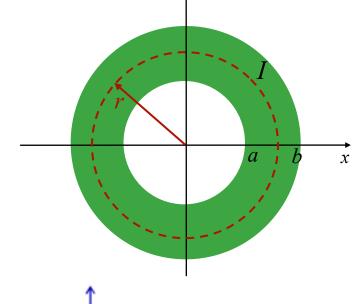
$$j = \frac{I}{\pi b^2 - \pi a^2}$$

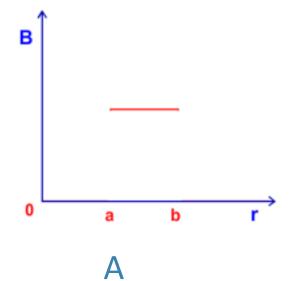


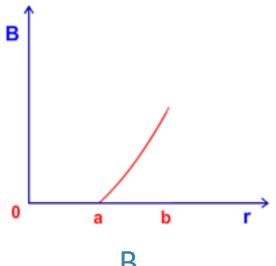
What does |B| look like for a < r < b?

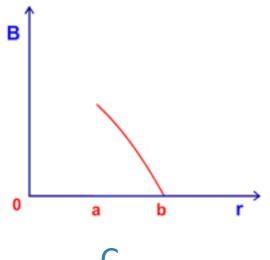
$$B \cdot 2\pi r = \mu_o \cdot jA_{enc}$$

$$B \cdot 2\pi r = \mu_o \cdot \frac{I}{\pi (b^2 - a^2)} \cdot \pi (r^2 - a^2)$$







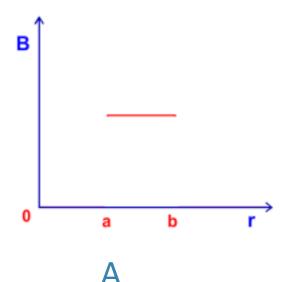


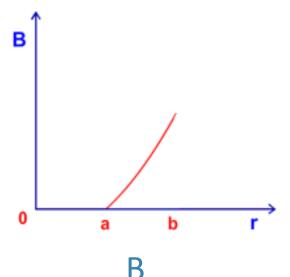
What does |B| look like for a < r < b?

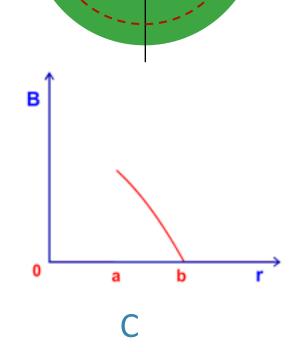
$$B \cdot 2\pi r = \mu_o \cdot jA_{enc}$$

$$B \cdot 2\pi r = \mu_o \cdot \frac{I}{\pi (b^2 - a^2)} \cdot \pi (r^2 - a^2)$$

$$B = \frac{\mu_o I}{2\pi r} \cdot \frac{(r^2 - a^2)}{(b^2 - a^2)}$$





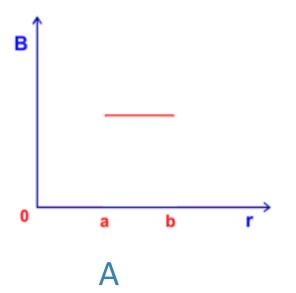


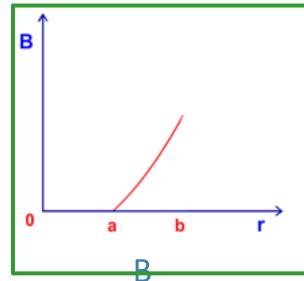
What does |B| look like for a < r < b?

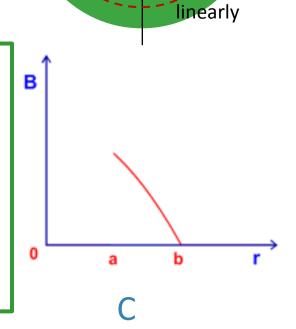
$$B \cdot 2\pi r = \mu_o \cdot jA_{enc}$$

$$B \cdot 2\pi r = \mu_o \cdot \frac{I}{\pi (b^2 - a^2)} \cdot \pi (r^2 - a^2)$$

$$B = \frac{\mu_o I}{2\pi r} \cdot \frac{(r^2 - a^2)}{(b^2 - a^2)}$$





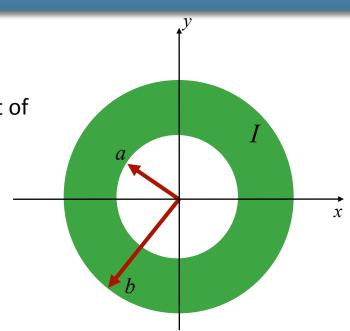


Starts at 0 and

inereases almos

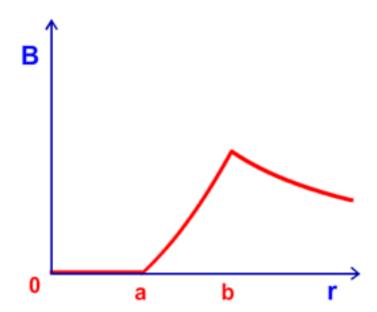
An infinitely long cylindrical shell with inner radius a and outer radius b carries a uniformly distributed current *I* out of the screen.

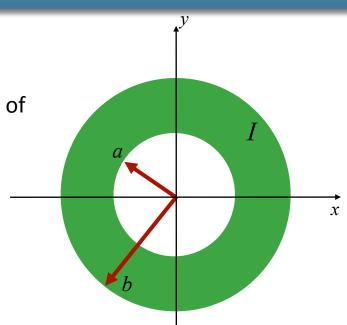
Sketch |B| as a function of r.



An infinitely long cylindrical shell with inner radius a and outer radius b carries a uniformly distributed current *I* out of the screen.

Sketch |B| as a function of r.





Follow-Up

Add an infinite wire along the z axis carrying current I_0 .

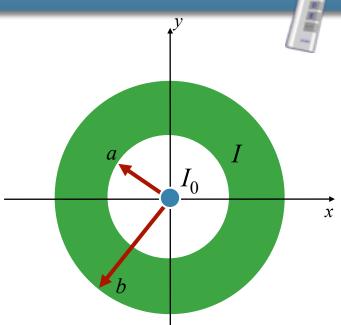
What must be true about I_0 such that there is some value of r, a < r < b, such that B(r) = 0?

B)
$$|I_0| > |I|$$
 AND I_0 out of screen

C)
$$|I_0| < |I|$$
 AND I_0 into screen

D)
$$|I_0| < |I|$$
 AND I_0 out of screen

E) There is no current I_0 that can produce B = 0 there



Follow-Up

Add an infinite wire along the z axis carrying current I_0 .

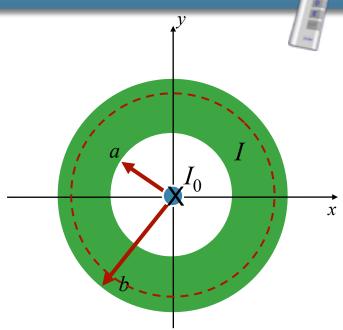
What must be true about I_0 such that there is some value of r, a < r < b, such that B(r) = 0?

B)
$$|I_0| > |I|$$
 AND I_0 out of screen

C)
$$|I_0| < |I|$$
 AND I_0 into screen

D)
$$|I_0| < |I|$$
 AND I_0 out of screen

E) There is no current I_0 that can produce B = 0 there



Follow-Up

Add an infinite wire along the z axis carrying current I_0 .

What must be true about I_0 such that there is some value of r, a < r < b, such that B(r) = 0?

B)
$$|I_0| > |I|$$
 AND I_0 out of screen

C)
$$|I_0| < |I|$$
 AND I_0 into screen

- D) $|I_0| < |I|$ AND I_0 out of screen
- E) There is no current I_0 that can produce B = 0 there

