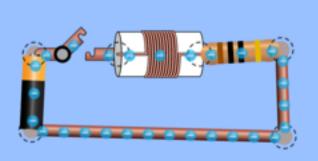

Electricity & Magnetism Lecture 18

Today's Concepts:

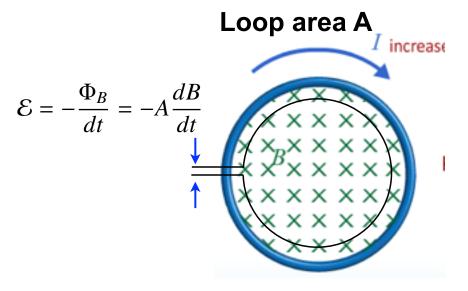
- A) Induction
- B) RL Circuits


INDUCTION and RL CIRCUITS

AC+DC Circuit Simulation

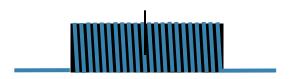
https://phet.colorado.edu/sims/html/circuitconstruction-kit-ac/latest/circuit-construction-kitac en.html

Comments

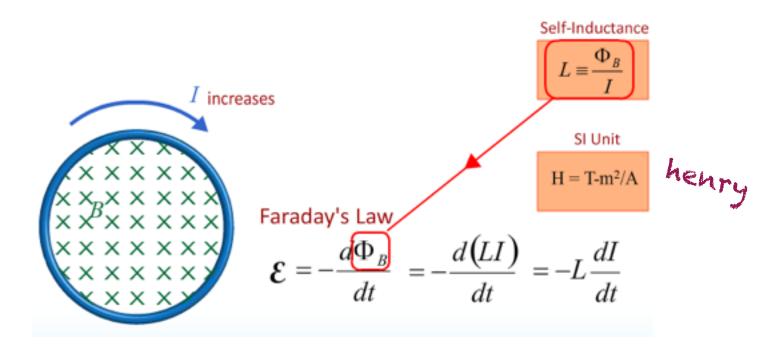

How is it possible for an inductor to have twice the voltage of a battery once it is disconnected from the battery?! where did this extra voltage come from?

Faraday's Law

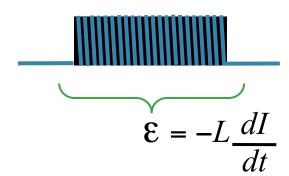
Is there a way to not make this flipit guy speak anymore. This course kinda gives me a headache and he makes it worse.


- Turn on Closed Captions
- > Turn off sound

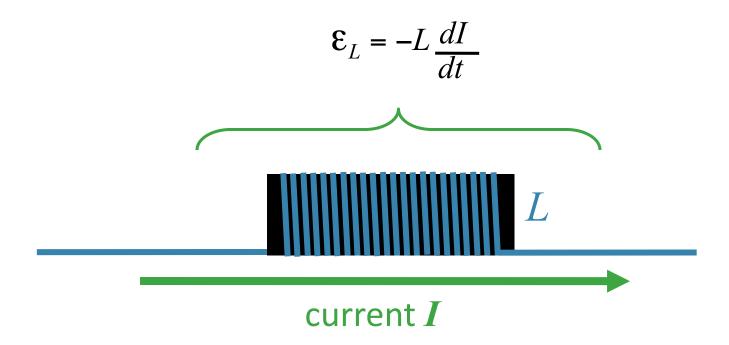
Mutual Inductance



If there are more turns N in the loop,


$$\mathcal{E} = -\frac{\Phi_B}{dt} = -NA\frac{dB}{dt}$$

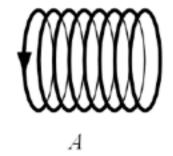
From the Prelecture: Self Inductance



Wrap a wire into a coil to make an "inductor"...

What this really means:

emf induced across *L* tries to keep *I* constant.


Inductors prevent discontinuous current changes!

It's like inertia!

Two solenoids are made with the same cross sectional area and total number of turns. Inductor B is twice as long as inductor A

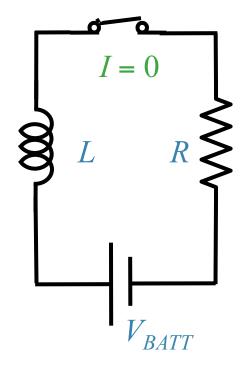
$$L_{B} = \mu_{0} n^{2} \pi r^{2} z$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad (1/2)^{2} \qquad 2$$

$$\longrightarrow L_B = \frac{1}{2}L_A$$

Compare the inductance of the two solenoids

A)
$$L_A = 4 L_B$$

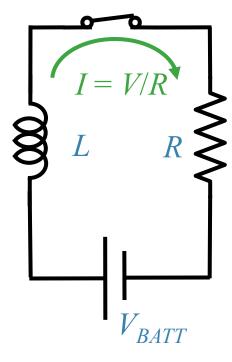

C)
$$L_A = L_B$$

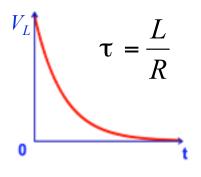
D)
$$L_A = (1/2) L_B$$

E)
$$L_A = (1/4) L_B$$

How to think about RL circuits Episode 1:

When no current is flowing initially:


At
$$t = 0$$
:


$$I = 0$$

$$V_L = V_{BATT}$$

$$V_R = 0$$

(L is like a giant resistor)

At
$$t \gg L/R$$
:

$$V_L = 0$$

$$V_R = V_{BATT}$$

$$I = V_{BATT}/R$$

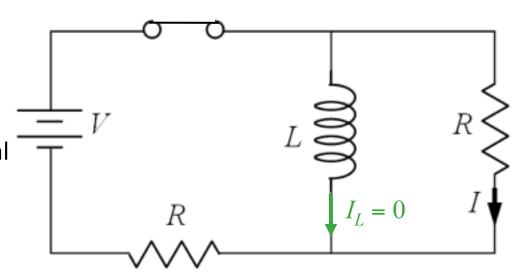
(L is like a short circuit)

In the circuit, the switch has been open for a long time, and the current is zero everywhere.

At time t = 0 the switch is closed.

What is the current I through the vertical resistor immediately after the switch is closed?

(+ is in the direction of the arrow)



B)
$$I = V/2R$$

C)
$$I = 0$$

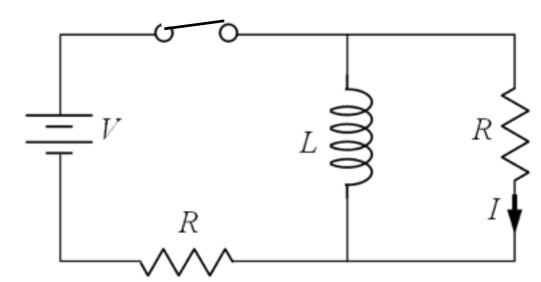
D)
$$I = -V/2R$$

E)
$$I = -V/R$$

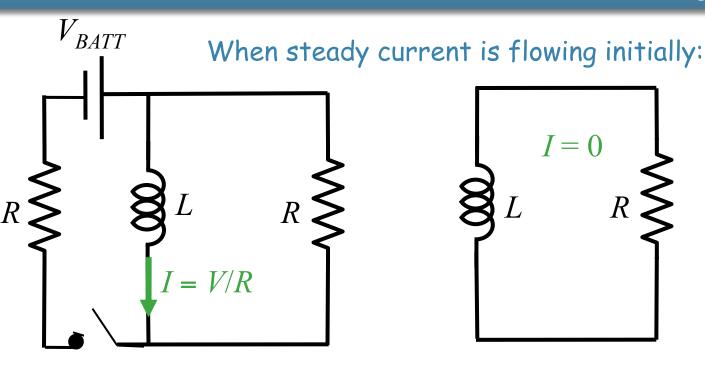
RL Circuit (Long Time)

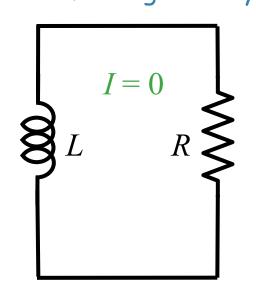
What is the current *I* through the vertical resistor after the switch has been closed for a long time?

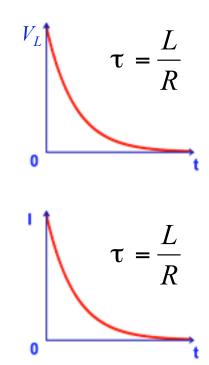
(+ is in the direction of the arrow)


A)
$$I = V/R$$

B)
$$I = V/2R$$


C)
$$I = 0$$


D)
$$I = -V/2R$$


E)
$$I = -V/R$$

How to Think about RL Circuits Episode 2:

At t = 0:

$$I = V_{BATT}/R$$

$$V_R = IR$$

$$V_L = V_R$$

At $t \gg L/R$:

$$I = 0$$

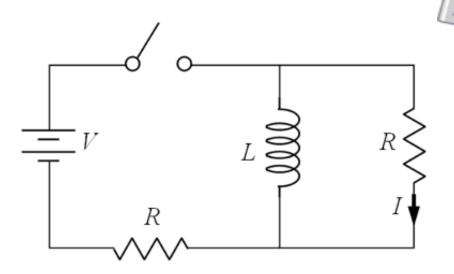
$$V_L = 0$$

$$V_R = 0$$

After a long time, the switch is opened, abruptly disconnecting the battery from the circuit.

What is the current I through the vertical resistor immediately after the switch is opened?

(+ is in the direction of the arrow)


A)
$$I = V/R$$

B)
$$I = V/2R$$

C)
$$I = 0$$

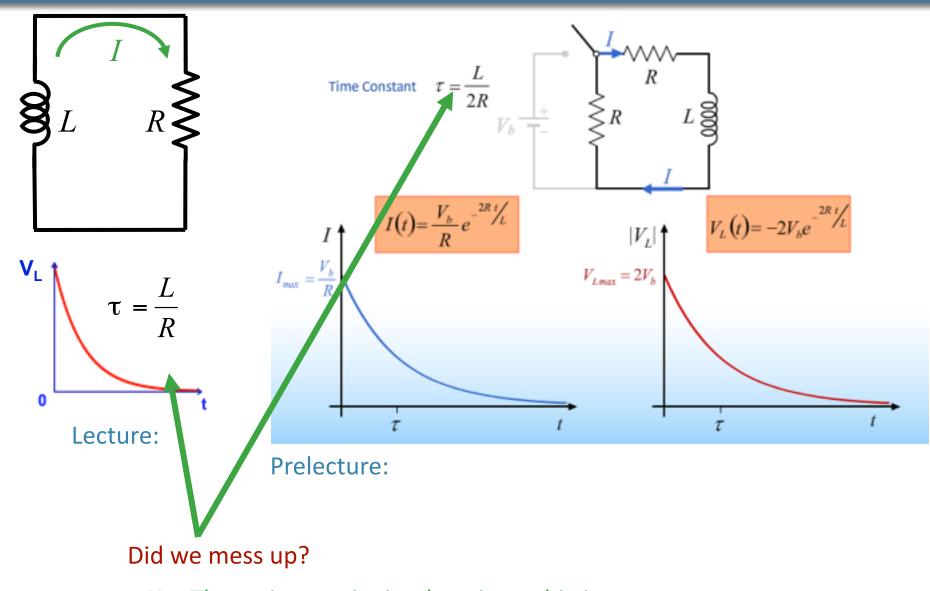
D)
$$I = -V/2R$$

E)
$$I = -V/R$$

Why is there Exponential Behavior?

$$V = L \frac{dI}{dt}$$

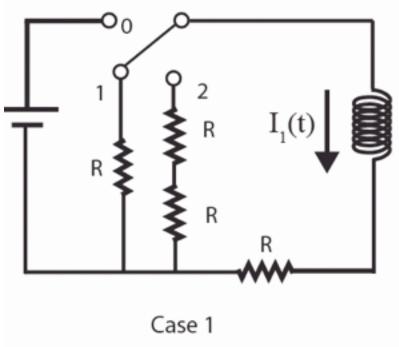
$$V = IR$$

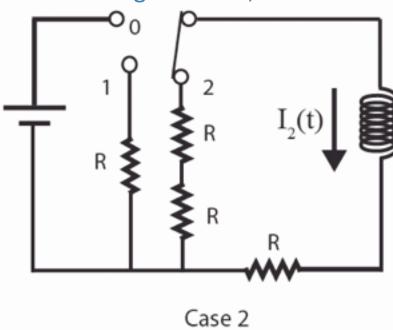

$$V = IR$$

$$V = IR$$

$$T = \frac{L}{R}$$

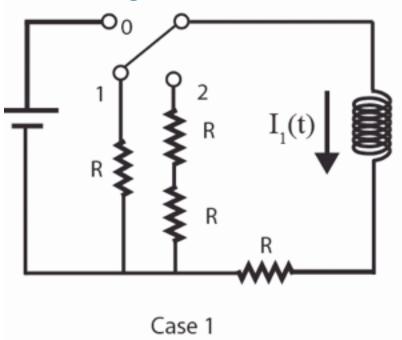
$$L \frac{dI}{dt} + IR = 0$$


$$I(t) = I_0 e^{-tR/L} = I_0 e^{-t/\tau}$$
where $\tau = \frac{L}{R}$

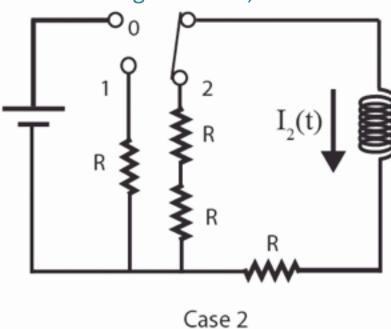

No: The resistance is simply twice as big in one case.

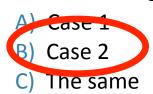
After long time at 0, moved to 1

After long time at 0, moved to 2



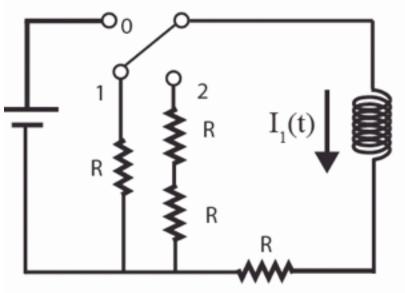
After switch moved, which case has larger time constant?


- A) Case 1
- B) Case Z
- C) The same


After long time at 0, moved to 1

After long time at 0, moved to 2

Immediately after switch moved, in which case is the voltage across the inductor larger?


 I_0 is V/R in both cases

A)
$$V_L(0) = I_0*2R$$

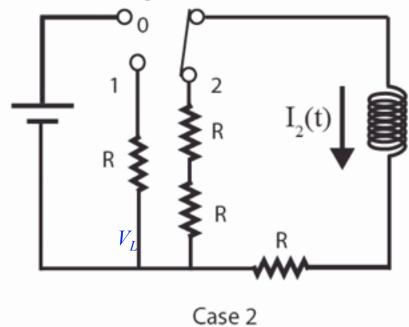
B)
$$V_L(0) = I_0*3R$$

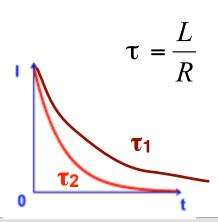
After long time at 0, moved to 1

Case 1

After switch moved for finite time, in which case is the current through the inductor

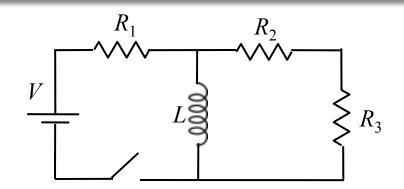
arger?




C) The same

A)
$$\tau_1 = L/2R$$

B)
$$\tau_2 = L/3R$$


After long time at 0, moved to 2

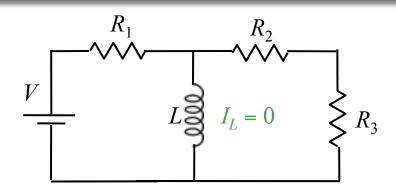
The switch in the circuit shown has been open for a long time. At t = 0, the switch is closed.

What is dI_L/dt , the time rate of change of the current through the inductor immediately after switch is closed

Conceptual Analysis

Once switch is closed, currents will flow through this 2-loop circuit.

KVR and KCR can be used to determine currents as a function of time.

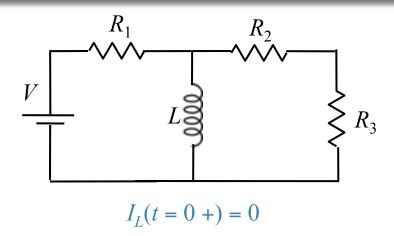

Strategic Analysis

Determine currents immediately after switch is closed.

Determine voltage across inductor immediately after switch is closed.

Determine dI_L/dt immediately after switch is closed.

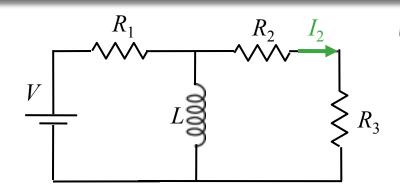
The switch in the circuit shown has been open for a long time. At t = 0, the switch is closed.


What is I_L , the current in the inductor, immediately after the switch is closed?

A)
$$I_I = V/R_1$$
 up

A)
$$I_L = V/R_1$$
 up B) $I_L = V/R_1$ down

C)
$$I_L = 0$$


The switch in the circuit shown has been open for a long time. At t = 0, the switch is closed.

What is the magnitude of I_2 , the current in R_2 , immediately after the switch is closed?

A)
$$I_2 = \frac{V}{R_1}$$
 B) $I_2 = \frac{V}{R_2 + R_3}$ C) $I_2 = \frac{V}{R_1 + R_2 + R_3}$ D) $I_2 = \frac{VR_2R_3}{R_2 + R_3}$

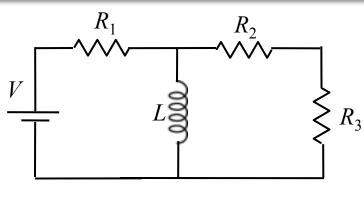
The switch in the circuit shown has been open for a long time. At t = 0, the switch is closed.

$$I_L(t=0+)=0$$
 $I_2(t=0+)=V/(R_1+R_2+R_3)$

What is the magnitude of V_I , the voltage across the inductor, immediately after the switch is closed?

$$A) V_L = V \frac{R_2 R_3}{R_2}$$

$$\mathsf{B)} \ \ V_L = V$$

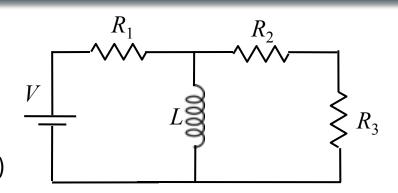

$$C) V_L = 0$$

$$D) V_L = V \frac{R_2 R_3}{R_1 (R_2 + R_3)}$$

A)
$$V_L = V \frac{R_2 R_3}{R_1}$$
 B) $V_L = V$ C) $V_L = 0$ D) $V_L = V \frac{R_2 R_3}{R_1 (R_2 + R_3)}$ E) $V_L = V \frac{R_2 + R_3}{R_1 + R_2 + R_3}$

The switch in the circuit shown has been open for a long time. At t=0, the switch is closed.

What is dI_L/dt , the time rate of change of the current through the inductor immediately after switch is closed


$$V_L(t = 0 +) = V(R_2 + R_3)/(R_1 + R_2 + R_3)$$

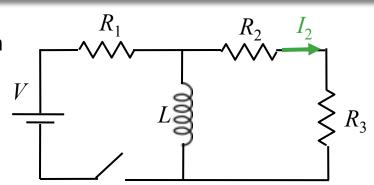
A)
$$\frac{dI_L}{dt} = \frac{V}{L} \frac{R_2 + R_3}{R_1}$$
 B) $\frac{dI_L}{dt} = 0$ C) $\frac{dI_L}{dt} = \frac{V}{L} \frac{R_2 + R_3}{R_1 + R_2 + R_3}$ D) $\frac{dI_L}{dt} = \frac{V}{L} \frac{R_2 + R_3}{R_1 + R_2 + R_3}$

Follow Up

The switch in the circuit shown has been closed for a long time.

What is I_2 , the current through R_2 ? (Positive values indicate current flows to the right)

A)
$$I_2 = +\frac{V}{R_2 + R_3}$$
 B) $I_2 = +\frac{V(R_2 R_3)}{R_1 + R_2 + R_3}$


$$C)I_2 = 0$$
 $D)I_2 = -\frac{V}{R_2 + R_3}$

Follow Up 2

The switch in the circuit shown has been closed for a long time at which point, the switch is opened.

What is I_2 , the current through R_2 immediately after switch is opened?

(Positive values indicate current flows to the right)

A)
$$I_2 = +\frac{V}{R_1 + R_2 + R_3}$$
 B) $I_2 = +\frac{V}{R_1}$ C) $I_2 = 0$

B)
$$I_2 = +\frac{V}{R_1}$$

C)
$$I_2 = 0$$

$$D(I_2 = -\frac{V}{R_1}) I_2 = -\frac{V}{R_1 + R_2 + R_3}$$