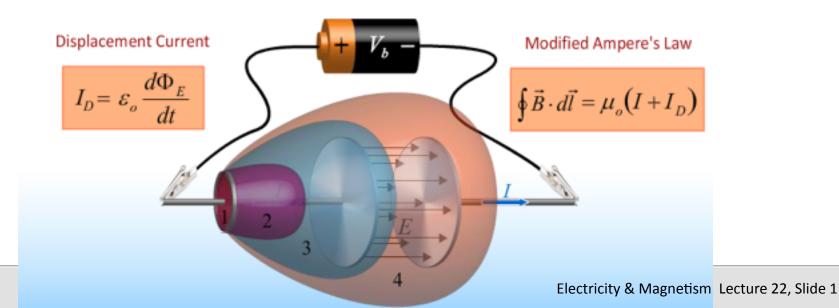
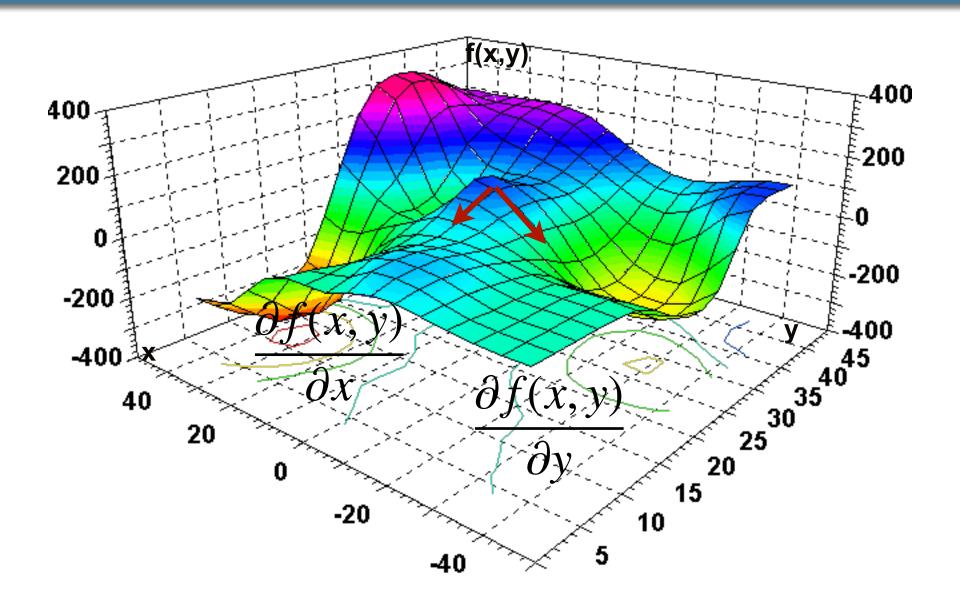
Electricity & Magnetism Lecture 22

DISPLACEMENT CURRENT and EM WAVES





Mechanical Universe and Beyond

Episode on Maxwell's Equations

- https://youtu.be/SS4tcajTsW8
- Historical context
- Visual animations

What We Knew Before Prelecture 22

MAXWELL'S EQUATIONS

Gauss' Law for E Fields

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_o}$$

Faraday's Law

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int \vec{B} \cdot d\vec{A}$$

Gauss' Law for B Fields

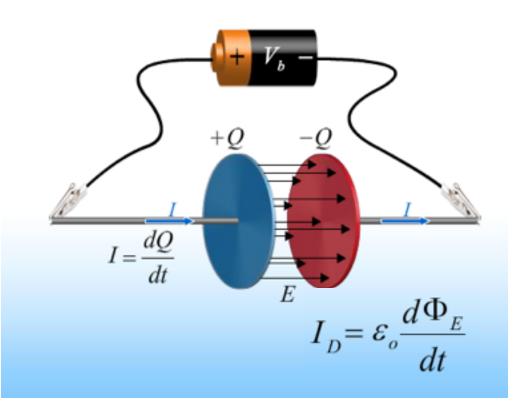
$$\oint \vec{B} \cdot d\vec{A} = 0$$

Ampere's Law

$$\oint \vec{B} \cdot d\vec{l} = \mu_o I_{enclosed}$$

After Prelecture 21: Modify Ampere's Law

$$\oint \vec{B} \cdot d\vec{l} = \mu_o I_{enclosed} = \mu_o \left(I + I_D \right)$$



$$E = \frac{\sigma}{\varepsilon_0} = \frac{Q}{\varepsilon_0 A}$$

$$\downarrow$$

$$\Phi_E = EA = \frac{Q}{\varepsilon_0}$$

$$\downarrow$$

$$Q = \varepsilon_0 \Phi_E$$

$$\downarrow$$

$$\frac{dQ}{dt} = \varepsilon_0 \frac{d\Phi_E}{dt} \equiv I_D$$

Displacement Current

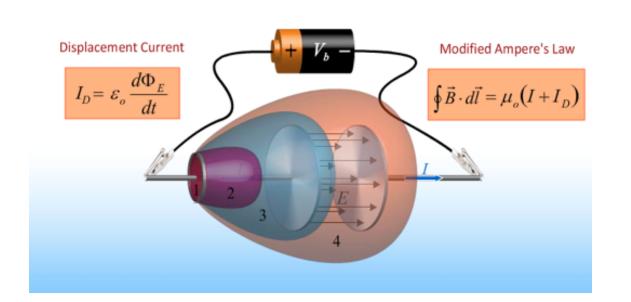
Real Current: Charge Q passes through area A in time t:

$$I = \frac{dQ}{dt}$$

Displacement Current: Electric flux through area A changes in time

$$I_D = \varepsilon_0 \frac{d\Phi_E}{dt}$$

DISPLACEMENT CURRENT and EM WAVES



Faraday's Law

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int \vec{B} \cdot d\vec{A}$$

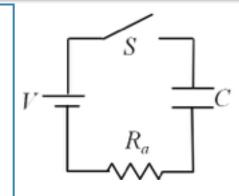
Modified Ampere's Law

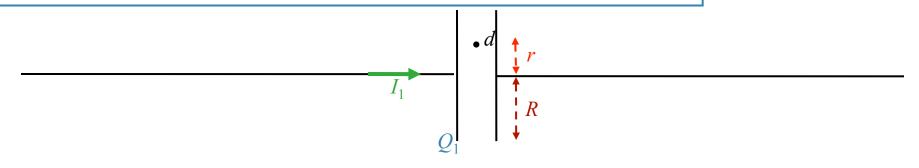
$$\oint \vec{B} \cdot d\vec{l} = \mu_o \varepsilon_o \frac{d}{dt} \int \vec{E} \cdot d\vec{A}$$

Free space

Switch S has been open a long time when at t=0, it is closed. Capacitor C has circular plates of radius R. At time $t=t_1$, a current I_1 flows in the circuit and the capacitor carries charge Q_1 .

At time t_1 , what is the magnetic field B_1 at a radius r (point d) in between the plates of the capacitor?





Conceptual and Strategic Analysis

Charge Q_1 creates electric field between the plates of C

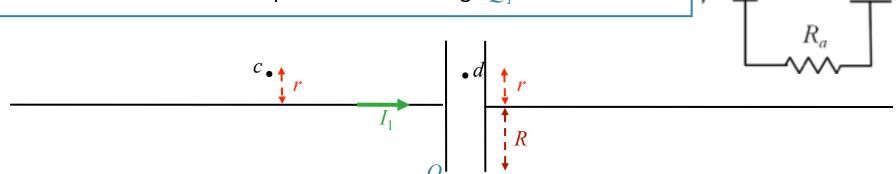
Charge Q_1 changing in time gives rise to a changing electric flux between the plates Changing electric flux gives rise to a displacement current I_D in between the plates

Apply (modified) Ampere's law using I_D to determine B

Switch S has been open a long time when at t = 0, it is closed.

Capacitor C has circular plates of radius R. At time $t=t_1$, a current I_1

flows in the circuit and the capacitor carries charge Q_I .



Compare the magnitudes of the B fields at points c and d.

A)
$$B_c < B_d$$

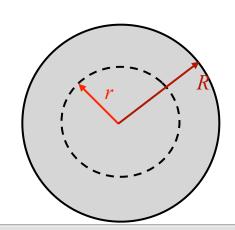
$$B) B_c = B_d$$

C)
$$B_c > B_d$$

What is the difference?
Apply (modified) Ampere's Law

point c: $I(\text{enclosed}) = I_1$

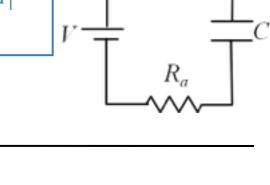
point
$$d$$
: I_D (enclosed) $< I_1$

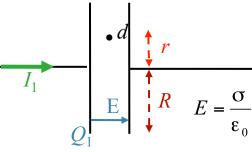


Switch S has been open a long time when at t = 0, it is closed.

Capacitor C has circular plates of radius R. At time $t=t_1$, a current I_1

flows in the circuit and the capacitor carries charge Q_I .





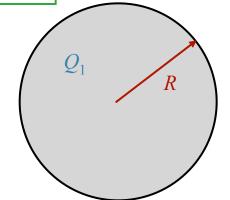
What is the magnitude of the electric field between the plates?

$$A) \quad E = \frac{Q_1}{\pi R^2 \varepsilon_0}$$

B)
$$E = \frac{Q_1 \pi R^2}{\varepsilon_0}$$

C)
$$E = \frac{Q_1}{\varepsilon_0}$$

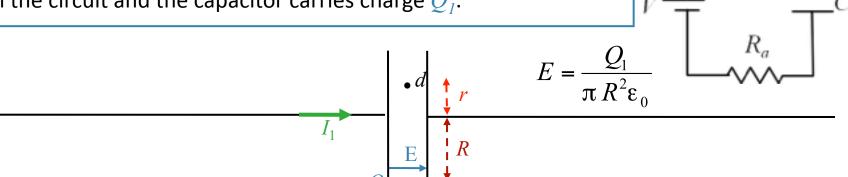
D)
$$E = \frac{Q_1}{r}$$



$$E = \frac{\sigma}{\varepsilon_0} \longrightarrow \sigma = \frac{Q_1}{A} = \frac{Q_1}{\pi R^2} \longrightarrow E = \frac{Q_1}{\varepsilon_0 \pi R^2}$$

Switch S has been open a long time when at t = 0, it is closed.

Capacitor C has circular plates of radius R. At time $t = t_1$, a current I_1 flows in the circuit and the capacitor carries charge Q_{I} .



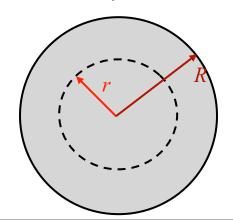
What is the electric flux through a circle of radius r in between the plates?

$$\mathbf{A)} \ \Phi_E = \frac{Q_1}{\varepsilon_0} \pi \, r^2$$

B)
$$\Phi_E = \frac{Q_1}{\varepsilon_0} \pi R^2$$

A)
$$\Phi_E = \frac{Q_1}{\varepsilon_0} \pi r^2$$
 B) $\Phi_E = \frac{Q_1}{\varepsilon_0} \pi R^2$ C) $\Phi_E = \frac{Q_1 r^2}{\varepsilon_0 R^2}$ D) $\Phi_E = \frac{Q_1 \pi r^2}{\varepsilon_0 R^2}$

$$\mathbf{D)} \; \Phi_E = \frac{Q_{\rm l} \pi \, r^2}{\varepsilon_0 R^2}$$

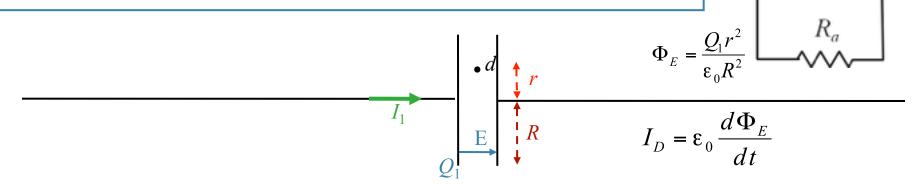


$$\oint \Phi_E = \vec{E} \cdot \vec{A} \longrightarrow \Phi_E = \frac{Q_1}{\varepsilon_0 \pi R^2} \pi r^2 \longrightarrow \Phi_E = \frac{Q_1}{\varepsilon_0} \frac{r^2}{R^2}$$

Switch S has been open a long time when at t = 0, it is closed.

Capacitor C has circular plates of radius R. At time $t = t_1$, a current I_1

flows in the circuit and the capacitor carries charge Q_1 .



What is the displacement current enclosed by circle of radius r?

A)
$$I_D = I_1 \frac{R^2}{r^2}$$

B)
$$I_D = I_1 \frac{r}{R}$$

A)
$$I_D = I_1 \frac{R^2}{r^2}$$
 B) $I_D = I_1 \frac{r}{R}$ C) $I_D = I_1 \frac{r^2}{R^2}$

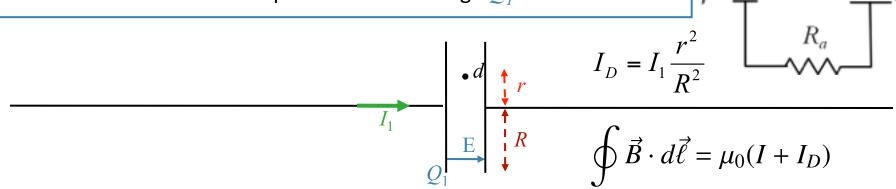
$$D)I_D = I_1 \frac{R}{r}$$

$$I_D = \varepsilon_0 \frac{d\Phi_E}{dt} = \frac{dQ_1}{dt} \frac{r^2}{R^2} = I_1 \frac{r^2}{R^2}$$

$$\longrightarrow I_D = I_1 \frac{r^2}{R^2}$$

Switch S has been open a long time when at t = 0, it is closed.

Capacitor C has circular plates of radius R. At time $t = t_1$, a current I_1 flows in the circuit and the capacitor carries charge Q_1 .



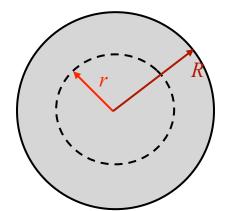
What is the magnitude of the B field at radius r ?

$$A) B = \frac{\mu_0 I_1}{2\pi R}$$

$$B) B = \frac{\mu_0 I_1}{2\pi r}$$

B)
$$B = \frac{\mu_0 I_1}{2\pi r}$$
 C) $B = \frac{\mu_0 I_1}{2\pi} \frac{R}{r^2}$

$$D)B = \frac{\mu_0 I_1}{2\pi} \frac{r}{R^2}$$



Ampere's Law:
$$\oint \vec{B} \cdot d\vec{\ell} = \mu_0 (I + I_D)$$

Ampere's Law:
$$\oint \vec{B} \cdot d\vec{\ell} = \mu_0 (I + I_D)$$

$$\longrightarrow B(2\pi r) = \mu_0 \left(0 + I_1 \frac{r^2}{R^2} \right)$$

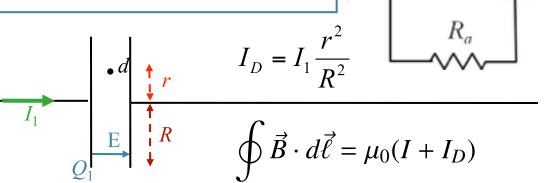
$$B = \frac{\mu_0 I_1}{2\pi} \frac{r}{R^2}$$

Calculate

Switch S has been open a long time when at t = 0, it is closed.

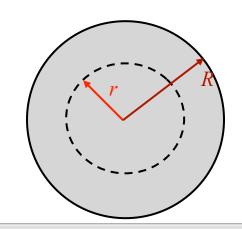
Capacitor C has circular plates of radius R. At time $t=t_1$, a current I_1

flows in the circuit and the capacitor carries charge Q_I .



What is the magnitude of the B field at radius r?

$$B = \frac{\mu_0 I_1}{2\pi} \frac{r}{R^2}$$



$$I_1 = 1 A$$

 $R = 1 m$

What is B at r = 0.5 m? (answer on next page)

answer

$$B = \frac{\mu_0 I_1}{2\pi} \frac{r}{R^2}$$

$$B = (2 \times 10^{-7})(1)(0.5)/1^{2}$$

$$B = 1 \times 10^{-7} \text{ T}$$

Let:

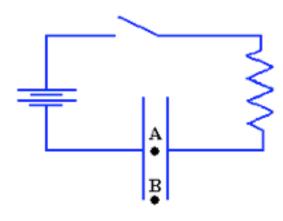
$$I_1 = 1 \text{ A}$$

 $R = 1 \text{ m}$

What is B at r = 0.5 m?

CheckPoint 2

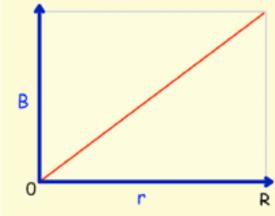
2) At time t = 0 the switch in the circuit shown below is closed. Points A and B lie inside the capacitor; A is at the center and B is toward the outer edge.



After the switch is closed, there will be a magnetic field at point A which is proportional to the current in the circuit.

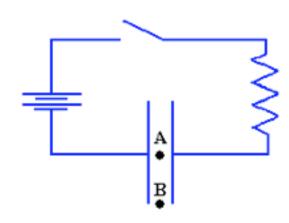
$$B = \frac{\mu_0 I_1}{2\pi} \frac{r}{R^2}$$

B is proportional to I but At A, B = 0 !!



CheckPoint 4

At time t = 0 the switch in the circuit shown below is closed. Points A and B lie inside the capacitor; A is at the center and B is toward the outer edge.



Compare the magnitudes of the magnetic fields at points A and B just after the switch is closed:

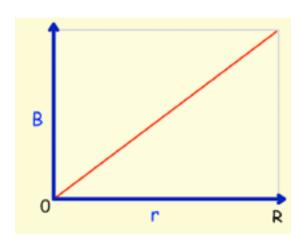
$$A \bigcirc B_A < B_B$$

$$B \bigcirc B_A = B_B$$

$$C \cap B_A > B_B$$

From the calculation we just did:

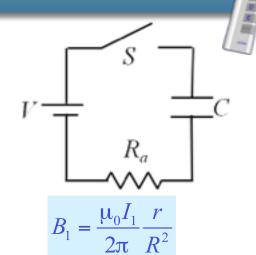
$$B = \frac{\mu_0 I_1}{2\pi} \frac{r}{R^2}$$

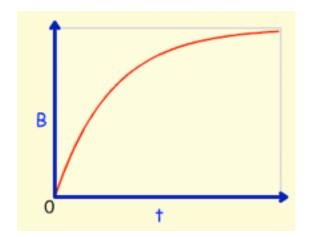


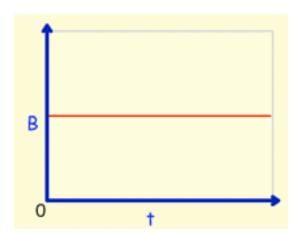
Follow-Up

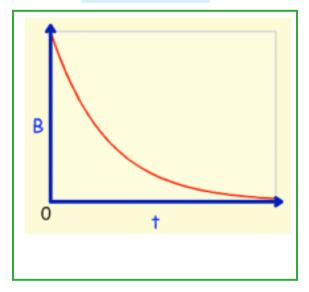
Switch S has been open a long time when at t=0, it is closed. Capacitor C has circular plates of radius R. At time $t=t_1$, a current I_1 flows in the circuit and the capacitor carries charge Q_1 .

What is the time dependence of the magnetic field B at a radius r between the plates of the capacitor?









B at fixed r is proportional to the current I

Close switch: $V_C = 0 \Rightarrow I = V/R_a$ (maximum)

I exponentially decays with time constant $\tau = R_a C$

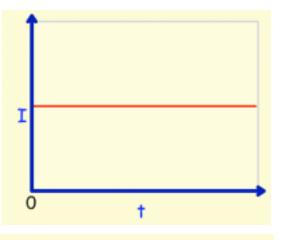
Follow-Up 2

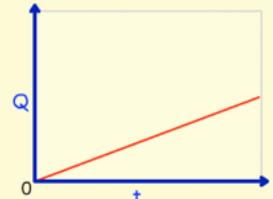
Suppose you were able to charge a capacitor with constant current (*I* does not change in time).

Does a *B* field exist in between the plates of the capacitor?

A) YES

B) NO





Constant current $\Rightarrow Q$ increases linearly with time

Therefore E increases linearly with time, $E = Q/(A\epsilon_0)$

dE/dt is not zero ⇒ Displacement current is not zero ⇒ B is not zero!

Waves

1-D Wave Equation

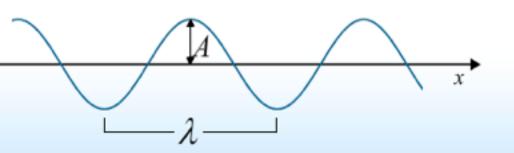
$$\frac{d^2h}{dx^2} = \frac{1}{v^2} \frac{d^2h}{dt^2}$$

Solution

$$h(x,t) = h_1(x-vt) + h_2(x+vt)$$

Common Example: Harmonic Plane Wave

$$h(x,t) = A\cos(kx - \omega t)$$



Variable Definitions

Amplitude: A

Wave Number: $k = \frac{2\pi}{\lambda}$

Wavelength: λ

Angular Frequency: $\omega = \frac{2\pi}{T}$

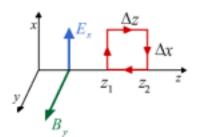
Period: T

Frequency: $f = \frac{1}{T}$

Velocity: $v = \lambda f = \frac{\omega}{k}$

Faraday's Law

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int \vec{B} \cdot d\vec{A}$$



$$\frac{\partial E_x}{\partial z} = -\frac{\partial B_y}{\partial t}$$

$$\frac{\partial^{2} E_{x}}{\partial z^{2}} = -\frac{\partial}{\partial z} \frac{\partial B_{y}}{\partial t}$$

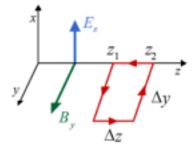
Plane Wave Solution

$$\vec{E} \to \vec{E}(z,t)$$

 $\vec{B} \to \vec{B}(z,t)$

Modified Ampere's Law

$$\oint \vec{B} \cdot d\vec{l} = \mu_o \varepsilon_o \frac{d}{dt} \int \vec{E} \cdot d\vec{A}$$



$$\frac{\partial B_{y}}{\partial z} = -\mu_{o} \varepsilon_{o} \frac{\partial E_{x}}{\partial t}$$

$$\frac{\partial}{\partial t} \frac{\partial B_{y}}{\partial z} = -\mu_{o} \varepsilon_{o} \frac{\partial^{2} E_{x}}{\partial t^{2}}$$

$$\frac{\partial^2 E_x}{\partial z^2} = \mu_o \varepsilon_o \frac{\partial^2 E_x}{\partial t^2}$$

Wave Equation

$$\frac{\partial^2 E_x}{\partial z^2} = \mu_o \varepsilon_o \frac{\partial^2 E_x}{\partial t^2}$$

Speed of Electromagnetic Wave

$$v = \frac{1}{\sqrt{\mu_o \varepsilon_o}} = c = 3.00 \times 10^8 \text{ m/s}$$
Speed of Light!

Special Relativity (1905)

Speed of Light is Constant

Albert Einstein

"How can light move at the same velocity in any inertial frame of reference? That's really trippy."

see PHYS 285

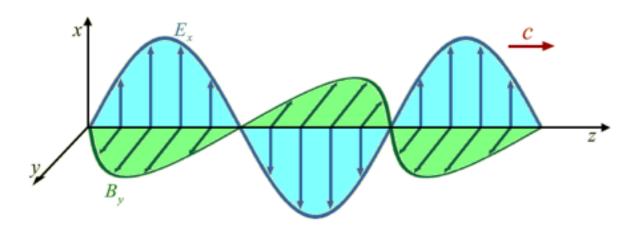
$$\frac{\partial^2 E_x}{\partial z^2} = \mu_o \varepsilon_o \frac{\partial^2 E_x}{\partial t^2}$$

$$\frac{\partial^2 B_y}{\partial z^2} = \mu_o \varepsilon_o \frac{\partial^2 B_y}{\partial t^2}$$

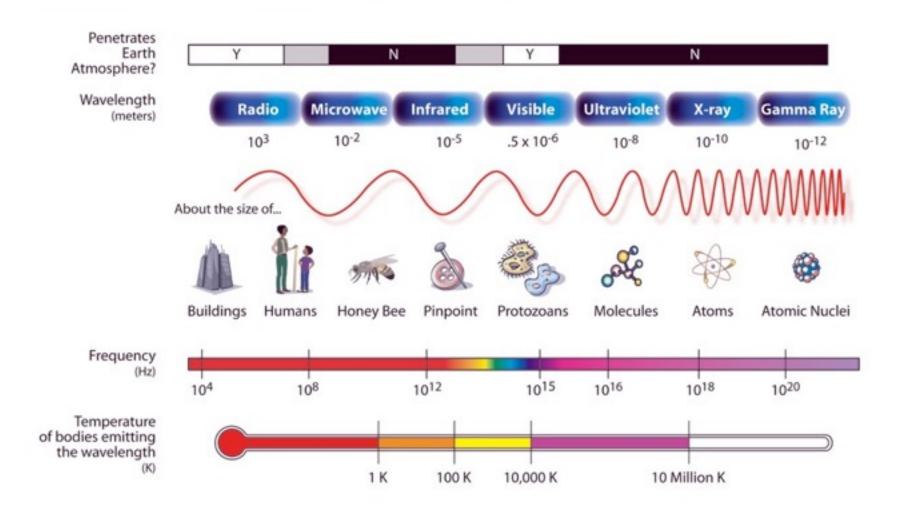
$$B_{y} = \frac{k}{\omega} E_{o} \cos(kz - \omega t)$$

Two Important Features

- 1. $B_{_{\boldsymbol{y}}}$ is in phase with $E_{_{\boldsymbol{x}}}$
- $2. B_o = \frac{E_o}{c}$

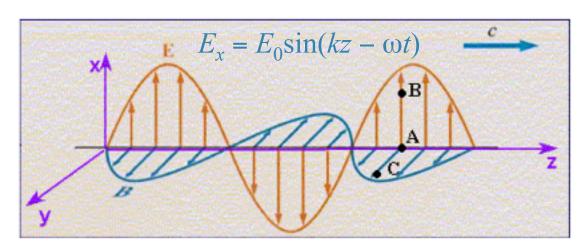


THE ELECTROMAGNETIC SPECTRUM



CheckPoint 6

6) An electromagnetic plane-wave is traveling in the +z direction. The illustration below shows this wave an some instant in time. Points A, B, and C have the same z coordinate.



Compare the magnitudes of the electric field at points A and B.

$$\begin{array}{c|c}
\hline
C E_a < E_b \\
\hline
C E_a > E_b
\end{array}$$

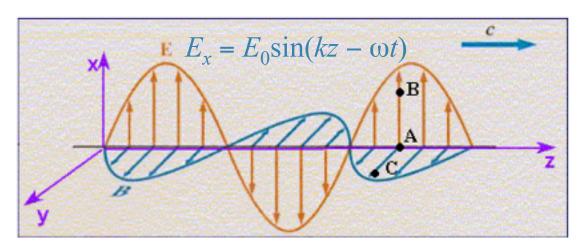
$$E = E_0 \sin(kz - \omega t)$$
:

E depends only on z coordinate for constant t.

z coordinate is same for A, B, C.

CheckPoint 7

An electromagnetic plane-wave is traveling in the +z direction. The illustration below shows this wave an some instant in time. Points A, B, and C have the same z coordinate.



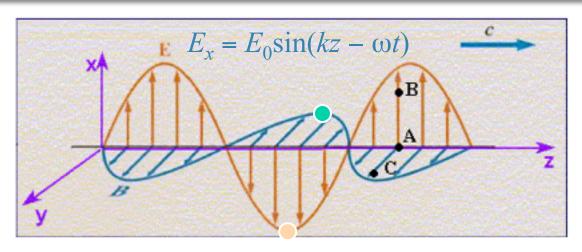
Compare the magnitudes of the electric field at points A and C.

$$E = E_0 \sin(kz - \omega t)$$
:

E depends only on z coordinate for constant t.

z coordinate is same for A, B, C.

Clicker Question



Consider a point (x,y,z) at time t when E_x is negative and has its maximum magnitude.

At (x,y,z) at time t, what is B_{y} ?

- A) B_v is positive and has its maximum magnitude
- B) B_{ν} is negative and has its maximum magnitude
- C) B_v is zero
- D) We do not have enough information