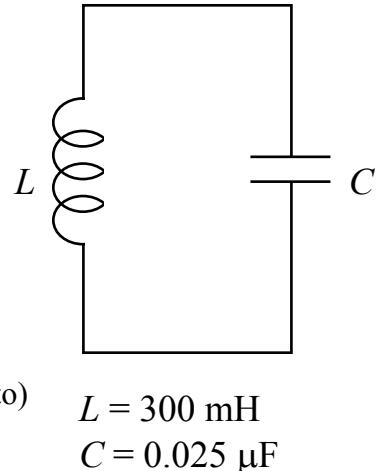


Discussion Question 11B
Physics 212 week 11
LC Circuits

At right, we see the classic **LC circuit**, consisting of an inductor in series with a capacitor. To be precise, this is an **undriven** LC circuit, since there is no battery driving the flow of current. Nevertheless, this simple circuit has an amazing and highly useful property: it supports a resonant oscillation of current. In the ideal case shown here where there is *no* resistance in the circuit, the oscillation can continue *indefinitely* without any external source of EMF to drive it. LC circuits often appear as parts of larger networks which are designed to operate at a particular frequency. The most familiar example is a radio, whose circuitry can be tuned to receive (i.e. respond to) incoming electromagnetic waves of a particular frequency.



(a) What is the angular frequency ω_0 of the current maintained by the circuit? What is the linear frequency f_0 ?

An *undriven* LC circuit can *only* operate in a stable way at its natural resonant frequency. As for linear versus angular frequency, the conversion is easy if you remember the units: f is in Hz = 1/sec, ω is in rad/sec.

The natural frequency is when the net reactance is 0 or $\omega_0 L - \frac{1}{\omega_0 C} = 0 \rightarrow$

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0.3(0.025 \times 10^{-6})}} = 11.55 \text{ krad/sec} ;$$

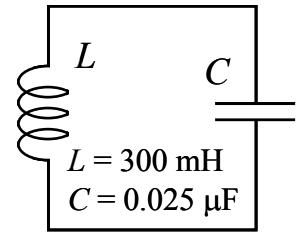
$$\omega_0 = 2\pi f_0 \rightarrow f_0 = \frac{\omega_0}{2\pi} = \frac{11.55 \text{ krad/sec}}{6.28318} = 1838 \text{ Hz}$$

(b) Let's set our clock so that the current in the circuit is at its maximum value I_{\max} at time $t = 0$. Write down an expression for the time-dependence of the current $I(t)$ in terms of I_{\max} and the frequency ω_0 .

It's either a sine or a cosine ...

We are looking for a trig function that maximizes as $t = 0$. Hence $I = I_{\max} \cos \omega_0 t$

(c) Starting from your expression for $I(t)$, determine the voltages $V_L(t)$ and $V_C(t)$ across the inductor and capacitor. As part of your solution, find the peak values $V_{L,\max}$ and $V_{C,\max}$ in terms of I_{\max} .



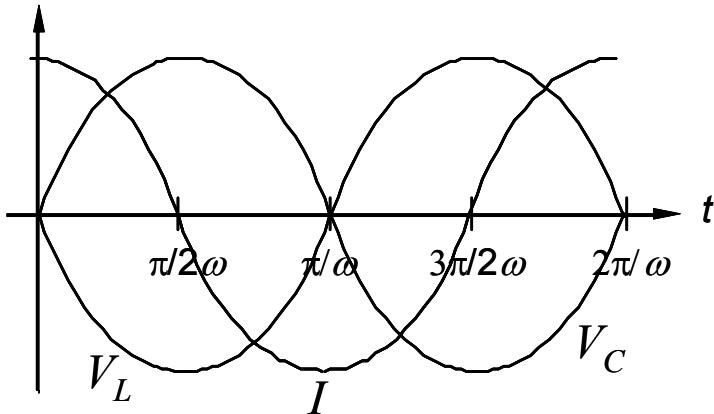
You'll need your familiar formulas for the voltage across R , C , and L ... and remember that, by definition, $I = \frac{dQ}{dt}$ and so $Q = \int I dt$.

$$V_L = L \frac{dI}{dt} = L \frac{d}{dt} (I_{\max} \cos \omega t) = LI_{\max} \frac{d\omega t}{dt} \left(\frac{d \cos \omega t}{d \omega t} \right) = -\omega L I_{\max} \sin \omega t \rightarrow V_{L,\max} = \omega L I_{\max}$$

$V_C = Q/C$ If the current is positive in the clockwise direction, $I = \frac{dQ}{dt}$

$$Q = \int dt I = \int dt I_{\max} \cos \omega t = \frac{I_{\max}}{\omega} \sin \omega t \rightarrow V_C = \frac{I_{\max}}{\omega C} \sin \omega t \rightarrow V_{C,\max} = \frac{I_{\max}}{\omega C}$$

(d) To visualize what's going on, sketch your functions $I(t)$, $V_L(t)$, and $V_C(t)$. Don't worry about the amplitudes of your curves, just their shapes and phases.



e) Have a look at your plot → does V_L lead or lag the current? How about V_C ?

Leading and lagging can be tricky concepts. Think of it this way: which one "gets there" (i.e. reaches its maximum value) first, V or I ? The one that "gets there first" leads the other.

V_L leads. V_C lags.

Another way of viewing leading and lagging is if $I \propto \cos \omega t$ and $V \propto \cos(\omega t + \delta)$, we say V leads I by δ . We can do this using $\cos(\omega t + \delta) = \cos \omega t \cos \delta - \sin \omega t \sin \delta$

$V_L \propto -\sin \omega t = \cos\left(\omega t + \frac{\pi}{2}\right)$ hence V_L leads I by 90°

$V_C \propto \sin \omega t = \cos\left(\omega t - \frac{\pi}{2}\right)$ hence V_C lags I by 90°

Congratulations! You've just derived the **master relations** between current and voltage for inductors and capacitors in an AC circuit!

Peak Values

$$\begin{aligned} V_{R,\max} &= I_{\max} R \\ V_{L,\max} &= I_{\max} X_L \rightarrow X_L = \omega L \\ V_{C,\max} &= I_{\max} X_C \rightarrow X_C = 1/\omega C \end{aligned}$$

Relative Phases

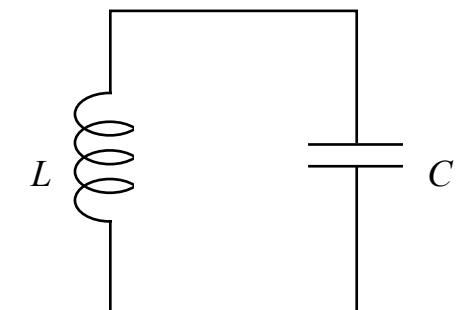
Across $R \rightarrow V$ in phase with I
Across $L \rightarrow V$ leads I by 90°
Across $C \rightarrow V$ lags I by 90°

Notice how all the peak-value formulas look like good old “ $V = IR$ ” \rightarrow the **reactances** X_L and X_C describe the effective resistance of inductors and capacitors in AC circuits.

We now set the circuit into oscillation by “stimulating” it with a brief pulse from some external source of EMF. The result is that the peak voltage across the capacitor is $V_{C,\max} = 120$ V.

(f) What is the peak current I_{\max} ?

$$\begin{aligned} L &= 300 \text{ mH} \\ C &= 0.025 \text{ } \mu\text{F} \\ V_{C,\max} &= 120 \text{ V} \end{aligned}$$



$$\text{From part (a)} \omega_0 = \frac{1}{\sqrt{LC}} = 11.5 \text{ krad/sec}$$

$$\begin{aligned} \text{From part (c)} V_{C,\max} &= \frac{I_{\max}}{\omega_0 C} \rightarrow I_{\max} = \omega_0 C V_{C,\max} \\ &= (11.5 \times 10^3 \text{ rad/sec})(0.025 \times 10^{-6} \text{ F})(120 \text{ V}) = 34.5 \text{ mA} \end{aligned}$$

(g) What are the maximum

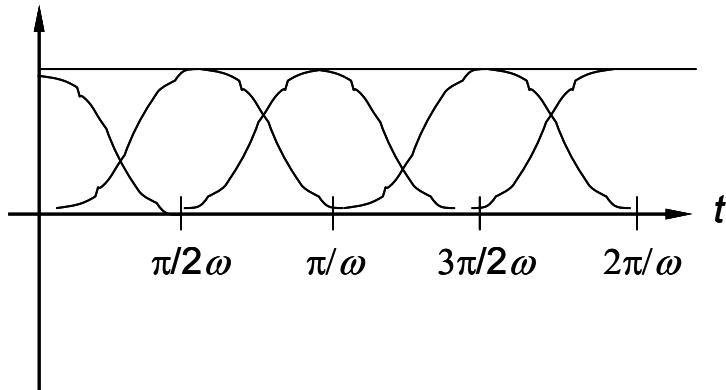
energies $U_{L,\max}$ and $U_{C,\max}$ stored in the inductor and capacitor respectively?

$$U_{L,\max} = 1/2 L I_{\max}^2 = 0.5 * (0.3) * (0.0345^2) = 0.18 \text{ mJ}$$

$$U_{C,\max} = 1/2 C (V_{C,\max})^2 = 0.5 * (0.025 \times 10^{-6}) * (120^2) = 0.18 \text{ mJ}$$

(h) Determine time-dependent expressions $U_L(t)$ and $U_C(t)$ for the two stored energies, and add them together to find the total stored energy $U(t)$. Finally, plot your results for all three functions.

Something like this: $U_{\text{total}}(t) = 0.18 \text{ mJ}$, U_C is a $\sin^2(\omega t)$ function while U_L is a $\cos^2(\omega t)$ function



(i) How are $U_{L,\max}$, $U_{C,\max}$, and U_{\max} related to each other?

Knowing this relation is extremely helpful in solving LC circuit problems!

All are equal:

This is no accident but always happens in RC circuits

$$\begin{aligned} U_{C,\max} &= \frac{1}{2} C V_{C,\max}^2 = \frac{1}{2} C (X_C I_{\max})^2 = \frac{1}{2} C \left(\frac{I_{\max}}{\omega C} \right)^2 = \frac{I_{\max}^2}{2C} \left(\frac{1}{\omega} \right)^2 \\ &= \frac{I_{\max}^2}{2C} \left(\frac{1}{1/\sqrt{LC}} \right)^2 = \frac{I_{\max}^2}{2C} LC = \frac{LI_{\max}^2}{2} = U_{L,\max} \end{aligned}$$