
Discussion Question 11D

P212, Week 11

RLC Circuits

(a) Calculate the maximum EMF E_m and the maximum current I_m in the RLC circuit described at right.

The “rms” = root-mean-square value of anything oscillating sinusoidally is its peak value divided by $\sqrt{2}$.

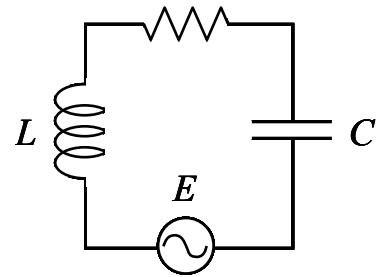
$$R = 200 \Omega$$

$$L = 40 \text{ mH}$$

$$C = 0.20 \mu\text{F}$$

$$E_{\text{rms}} = 120 \text{ V}$$

$$\omega = 10^4 \text{ rad/sec}$$


(b) Find the magnitude and sign of the phase ϕ by which the driving EMF leads the current.

A negative phase means that the driving EMF *lags* the current ... which is the case here? Does your answer make sense given the reactances you calculated earlier?

(c) Draw the phasor diagram for this circuit, giving numerical values for the lengths of each phasor (E , V_R , V_C , V_L).

Be sure to draw your diagram carefully: use longer phasors for larger peak voltages.

(d) What is the resonant frequency ω_0 of this circuit?

$$R = 200 \Omega$$

$$L = 40 \text{ mH}$$

$$C = 0.20 \mu\text{F}$$

$$E_{\text{rms}} = 120 \text{ V}$$

$$\omega = 10^4 \text{ rad/sec}$$

(e) Calculate the maximum energies $U_{L,\text{max}}$ and $U_{C,\text{max}}$ stored in the inductor and capacitor.

(f) Assume that the angular frequency ω of the generator is variable. For what ω is the total impedance Z equal to $2R$? Hint- you will get a quadratic equation.