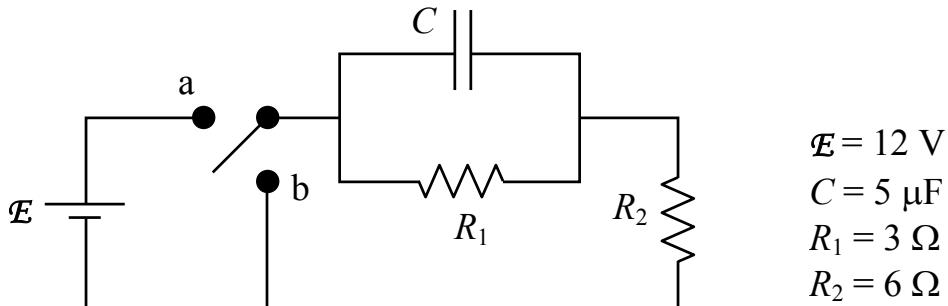


Discussion Question 7A

P212, Week 7

RC Circuits

The circuit shown initially has the capacitor uncharged, and the switch connected to neither terminal. At time $t = 0$, the switch is thrown to position a.



(a) At $t = 0+$, immediately after the switch is thrown to position a, what are the currents I_1 and I_2 across the two resistors?

What does the uncharged capacitor *look like* to the rest of the circuit at time 0? Does it offer *any* resistance to the flow of charge? (Why or why not?)

At $t = 0$, the capacitor acts like wire w/ no resistance to current flow. Hence the battery is effectively hooked to $R_2 = 6\Omega \Rightarrow I = \mathcal{E} / R_2 = 12V / 6\Omega = 2 \text{ A}$

(b) After a very long time, what is the instantaneous power P dissipated in the circuit?

After a very long time, what will have happened to the capacitor? Now what will it look like to the rest of the circuit?

After a long time the capacitor acts like an open circuit and the battery current flows through $R_1 + R_2$. Hence $I = \mathcal{E} / (R_1 + R_2) = 12 / 9 = 4/3 \text{ A}$ and the power is $P = \mathcal{E} I = (12V) \times (4/3A) = 16 \text{ W}$

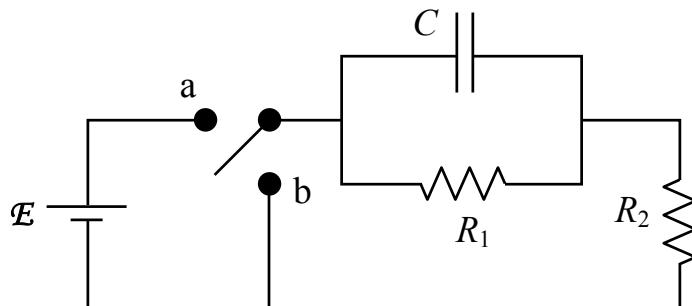
(c) After a very long time, what is the Q charge on the capacitor?

To determine Q , you need the voltage across the capacitor ...

From part (b), we know after a long time $I=4/3 \text{ A}$. The voltage drop across the capacitor is the same as the voltage drop across $R_1 \rightarrow \Delta V_{\text{cap}} = IR_1 = 4/3 \text{ A} \times 3\Omega = 4V$.

$$Q = C \Delta V_{\text{cap}} = (5\mu\text{F})(4V) = 20\mu\text{C}$$

Next, after a very long time T , the switch is thrown to position b.



(d) What is the time constant τ that describes the discharging of the capacitor?

We have a nice formula available for time constants: $\tau = RC$. But the R in the formula refers to the *total resistance through which the capacitor discharges*. Redrawing your circuit might help you to determine this R .

When the switch is thrown to b, the capacitor discharges through R_1 and R_2 in parallel.

$$R_{\text{equiv}} = R_1 R_2 / (R_1 + R_2) = 3(6)/(3 + 6) = 2\Omega ; \tau = CR_{\text{equiv}} = (5\mu F)(2\Omega) = 10\mu s$$

(e) Write down an equation for the time dependence of the charge on the capacitor, for times $t > T$. Your answer for $Q(t)$ should depend only on the known quantities E , R_1 , R_2 , C , and T .

You know the general form for the time dependence of a discharging capacitor. All you have to do is fix the constants in this expression to match the charge at $t = T$ and at $t = \infty$.

We know that Q will involve a $\exp(-t/\tau)$ factor added to a possible constant. The boundary conditions are at $t = T^+$, $Q = 20 \mu C$ and fades to zero at infinity.

$$\text{The form that does this is } Q = 20\mu C \exp\left(-\frac{t-T}{10\mu s}\right)$$

(f) What is the charge Q_{20} on the capacitor 20 μ sec after time T ?

$$Q = 20\mu C \exp\left(-\frac{t-T}{10\mu s}\right) = 20\mu C \exp\left(-\frac{20\mu s}{10\mu s}\right) = 20e^{-2} = 2.71 \mu C$$

(g) What is the current through R_2 20 μ sec after time T ?

The voltage across R_2 is the $\Delta V_{\text{cap}} = Q_{20} / C = 2.71\mu C / 5\mu F = 0.542 V$

$$\Delta V_{\text{cap}} = I_2 R_2 \rightarrow I_2 = (0.542 V) / (6\Omega) = 0.0903 A$$