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UNIT 14:  HARMONIC MOTION
Approximate Time three 100-minute sessions

          

 

Back and Forth and Back and Forth. . .
                                                                                        Cameo

OBJECTIVES 
 

1. To learn directly about some of the characteristics of pe-
riodic motion – period, frequency, and amplitude.

2. To understand the basic properties of Simple Harmonic 
Motion (SHM), in which the displacement of a particle var-
ies sinusoidally in time.

3. To show experimentally that a mass oscillating on a 
spring undergoes, within the limits of experimental uncer-
tainty, Simple Harmonic Motion.

4. To explore theoretically the factors that influence the 
rate of oscillation of a mass-spring system using Newton's 
laws.

5. To explore the harmonic oscillations of the simple pendu-
lum and the relationship between period, mass, and length 
of the pendulum, both experimentally and theoretically.
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Any motion that repeats itself regularly is known as har-
monic or periodic motion.  The pendulum in a grandfather 
clock, molecules in a crystal, the vibrations of a car after it 
encounters a pothole on the road, and the rotation of the 
earth around the sun are examples of periodic motion.  In 
this unit we will be especially interested in a type of periodic 
motion known as Simple Harmonic Motion, which is often 
called SHM.  SHM involves a displacement that changes si-
nusoidally in time.  In this unit, you will explore the mathe-
matical significance of the phrase "displacement that 
changes sinusoidally in time".  You will also study the 
mathematical behaviour of two classical systems that un-
dergo SHM – the mass on a spring and the simple pendulum. 

SHM is so common in the physical world that your under-
standing of its mathematical description will help you under-
stand such diverse phenomena as the behaviour of the tiniest 
fundamental particles, how clocks work, and how pulsars 
emit radio waves.  Pendula and masses on springs are 
merely two examples of thousands of similar periodic sys-
tems that oscillate with simple harmonic motion.

In this unit we will study two oscillating systems:  a mass and spring system and a 
simple pendulum.  You will need to devise some ways to describe oscillating systems 
in general and then apply these descriptions to help you observe periodic oscilla-
tions.  There are several questions you must address in the next three sessions:  
What is periodic motion and how can it be characterized?  What factors does the rate 
of oscillation of a simple pendulum really depend on?  What mathematical behaviour 
is required of a periodic system to qualify its motion as harmonic?  Is the oscillation 
of a mass on the end of a spring really harmonic?  How do Newton's laws allow us to 
predict that the motion of a mass on an ideal spring will be harmonic?
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SESSION ONE: OSCILLATING SYSTEMS
10 min
Some Characteristics of Oscillating Systems
A mass on a spring, a simple pendulum, and a "particle" rotating on a wheel with 
uniform angular velocity can be adjusted so they undergo oscillations that have 
some similarities.  To observe these three systems you need the following apparatus:

  • A pendulum bob
  • A string of variable length
  • A spring (mounted with the tapered end up)
  • A mass pan and masses
  • A rotating disk with a pin on its outer rim
  • A variable speed motor to drive the disk
  • Clamp stands and rods for support

These three systems are pictured below.

Figure 14-1: The pendulum, spring and mass, and rotating disk 
as oscillating systems.

✍ Activity 14-1: Periodic System Similarities
(a) Describe in your own words what characteristic of all three 
systems seems to be the same.


 These three systems should be adjusted so they have the same frequency 
and hence the same period. The speed of the motor, the length of the pen-
dulum and the mass on the spring can all be varied until the frequencies are 
matched.

(b) Describe what additional characteristic seems to be the same 
about the spring-mass system and the rotating disk.


 The mass on the spring should be pulled back so that its amplitude equals 
the radius of the disk and its phase should be the same as that of the pin on 
the disk.
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20 min
Useful Definitions for Oscillating Systems 
In describing the similarities between the oscillating systems it would be useful if we 
all used a common vocabulary.  The three terms used most often in describing oscil-
lations are the following:

tic
toc

tic

toc

tic

toc

tic

toc

tic

toc

Period – The time it takes for the oscillating particle to go 
through one complete cycle of oscillation.  This is commonly 
denoted by the capital letter T.

Frequency – The number of cycles the oscillating particle 
makes in one second.  This is denoted by the symbol f or the 
Greek letter small ν (pronounced nu) in most textbooks.  The 
units of frequency are hertz where 1 hertz = 1 cycle/sec.  The 
unit hertz is abbreviated Hz.

Amplitude – The maximum displacement of the oscillating 
particle from its equilibrium position.  Following the conven-
tion in this course, displacement is usually measured in me-
ters.  The symbol for amplitude is often the capital letter A.  
Other letters such as  Xmax or Ymax  are also used.  In the 
case of the simple pendulum, the amplitude is usually 
measured in radians and denoted by θmax. 

Two of these definitions, frequency and period, are related to each other.  By observ-
ing the systems shown in Figure 14-1 above, you should be able to find a mathemati-
cal equation that relates the frequency of a given oscillating system to its period.  To 
do the needed observations you'll need the following items:
 

• a spring-mass system w/ several masses
• a disk rotating with constant angular velocity
• a simple pendulum
• a stop watch

Warning! If you add too much mass to a spring it will become permanently stretched and 
hence ruined. 
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✍ Activity 14-2: Relating Period and Frequency
Take a look at the three systems discussed above.  Use the stop 
watch and record the average period and frequency of the object in 
question in each case. 
Hint: For more accuracy, you can count cycles for a long time and 
divide the total number of cycles by the total time in seconds to 
get the frequency in hertz.  Also, you can time multiple periods 
and divide the total time by  the number of periods.

(a) Amplitude:
   Pendulum (rad) ______   

   Mass on spring (m) ______   

   Particle on wheel (m) ______

(b) Period (s):
   Pendulum ______  

   Mass on spring ______  

   Particle on wheel ______  

(c) Frequency (Hz):
   Pendulum ______  

   Mass on Spring ______  

   Particle on wheel ______  

(d) Is there any obvious mathematical relationship between the 
period and frequency?  For example, what happens to the period 
when the frequency doubles?  Use mathematical data to confirm 
this relationship, not just qualitative reasoning.  To get this data 
you can vary the amount of mass loaded on a spring.

Period (s) Frequency (Hz)
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50 min
Graphing Periodic Motion Using a Motion Detector
What is the nature of the displacement as a function of time for the spring-mass sys-
tem?  Can you predict how the displacement will vary with time?  How will your 
prediction compare with actual observations?  This activity involves using a motion 
detector system to track the displacement of a mass on a spring.  For this activity 
you'll need the following apparatus:

  • A spring
  • Some masses to hang on the spring
  • A clamp stand
  • A motion detection system
 
The setup is shown in the figure below.

Xmax

Xmax

Highest Position

Lowest Position

Amplitude: 
maximum 
displacement from 
equilibrium.

Motion Detector

x0 the equilibrium distance

x(t) = x – x0
the displacement 
from equilibrium

Figure 14-2: Diagram of the setup for the Graphical Observation 
of the Motion of a Mass on a Spring. 

Pull down on your spring to obtain a good healthy amplitude.  (Somewhere between a 
small displacement and one that stretches the spring so much that it remains perma-
nently distorted.)  Let the mass go.  As you watch the mass oscillating on the spring 
you can see the mass going from a maximum displacement to no displacement and 
then to a maximum displacement in the opposite direction.  What do you expect a 
graph of this motion to look like? 
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✍ Activity 14-3: Position Graph for a Mass on a Spring 
(a) What would a graph of the mass' distance from the motion de-
tector vs. time look like?  Sketch your prediction below.
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(b) Explain the physical basis for your prediction.

(c) Set up the motion software to record a distance vs. time graph 
for 10 seconds. Take at least 100 points/second.  Use the motion 
detector to measure the equilibrium position of the mass and re-
cord it below.

 (d) Give your mass approximately the same amplitude you gave 
it for your casual observations.  In the space below sketch the 
graph you see on the computer screen. 
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(e) How does the shape of the graph compare with that which you 
predicted?  How about the amplitude you predicted?  The period?  
If the observed shape differs from the predicted shape, explain 
what assumptions you were making that don't seem valid?
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(f) Label the sketch of your observed graph in part (d) as follows: 
 

"1" at the beginning of a cycle and "2" at the end the same cycle
"A" on the points on the graph where the mass is moving away from the detector 
most rapidly.
"B" on the points on the graph where the mass is moving toward the detector most 
rapidly.
"C" on the points on the graph were the mass is standing still.
"D" where the mass is farthest from the motion detector.
"E" where the mass is closest to the motion detector.

(g) Use the analysis feature of the software to read points on the graph and find the period, 
T, of the oscillations.

(h)Find the frequency of the oscillations, f, from the graph.

(i) Use the analysis feature again to find the equilibrium distance and the amplitude , Xmax, 
of the oscillations.  Show your computations.

Note: At this point, be sure to save your data as a file. You will need it for the next 
couple of activities!

✍ Activity 14-4: Velocity Graph for a Mass-Spring System
(a) At what displacements from equilibrium is the velocity of the 
oscillating mass a maximum?  A minimum?  At what displace-
ments is the velocity of the mass zero?  (For instance, is the veloc-
ity a maximum when the displacement is a maximum? is zero? or 
what?)

Page 14-8  Workshop Physics Activity Guide  

© 1990-93 Dept. of Physics & Astronomy, Dickinson College   Supported by FIPSE (U.S. 
Dept. of Ed.) and NSF. Modified for SFU by N. Alberding, 2005.



(b) Use the results of your observations in part (a) to sketch a 
predicted shape of the graph describing how the velocity, v, of the 
mass varies with time compared to the variation of the displace-
ment at the same times.  Use a dotted line or a different colour of 
pen or pencil for the predicted velocity graph. 
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(c) Arrange to display the distance and velocity graphs on the 
same screen using the motion software.  Sketch the actual veloc-
ity on the graph above with a solid line.

 

10 min
What is Simple Harmonic Motion?

Simple Harmonic Motion is defined as any periodic motion in which the displace-
ment varies sinusoidally in time.  In other words, either a sine or cosine function, 
which both have exactly  the same basic shape, can be used to describe the displace-
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ment as a function of time.  To be more exact, a general sinusoidal equation that de-
scribes the displacement x(t) as time goes on can be given in the form
   
  x(t)= Xmax cos (ωt + φ)  [ Eq. 14-1]

where A is the amplitude or (maximum displacement from equilibrium) of an oscil-
lating mass, ω is its angular frequency, and φ is its phase angle. 

Definitions
Angular frequency (ω): 
ω ≡ 2πf (rad/s) 
where ω has units of rad/s (or s–1) and f is the frequency of oscillation in hertz

Phase Angle (φ): 
φ ≡ ± ArcCosine (x(0)/Xmax).  The phase angle is the angle in radians needed to de-
termine the value of the displacement, x(0) of the oscillating system when t=0 s.
This phase angle is positive (+) when the velocity of the mass is negative and it is 
negative when the velocity of the mass is positive.

30 min
Was the Motion Harmonic?
During the remainder of Session 1 and continuing into Session 2, we would like you 
to demonstrate that, within the limits of experimental uncertainty, the actual mo-
tion of a mass on the end of a spring undergoes a sinusoidal oscillation, which can be 
represented by the Simple Harmonic Motion Equation (Eq. 14-1).

Consider the data you recorded earlier with the motion detector for displacement of 
a mass on a spring as a function of time. How closely can the data be represented by 
a cosine function?  This is the acid test for ideal simple harmonic motion.

✍ Activity 14-5: Displacement vs. Time – Experimental
(a) Refer to the data you reported in Activity 14-3 and use it to 
find the amplitude Xmax and the angular frequency ω associated 
with the motion you recorded for the mass on the spring.

Xmax =                                                                      ω  = 

(b) Use equation 14-1 to show mathematically that the phase an-
gle is given by φ ≡ ± ArcCosine (x(0)/Xmax). Explain why the ± sign 
is needed.
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(c) Use the definition of the phase angle along with the value of 
the displacement at time t=0 and the values of ω and A you de-
termined to calculate the value of the phase angle, φ. 

(d) In order to compare the theoretical and experimental dis-
placements with each other, you should do the following:

1. Call up your file of spring oscillation data you saved 
earlier in this session, and paste the table of values 
for the distance from the motion detector vs. time for 
at least two complete cycles of oscillation into a model-
ling spreadsheet file starting at time t=0 seconds.  

2. Add a column to the spreadsheet entitled 
"x(t) experimental" and calculate the displacements of 
the mass from equilibrium from the distance data.  
(See Figure 14-2 for details.) 

3. Enter the values of Xmax, ω and φ in cells.

4. Next add a column entitled "x(t) theoretical" to your 
spread sheet, and enter equation 14-1 to calculate the 
theoretical values of the displacements, x(t), at the 
same times you measured the experimental values of 
distances from the motion detector.  Use absolute ref-
erences to call on the cells containing  values of Xmax, 
ω and φ. 

5. Format the spread sheet to include units and the cor-
rect number of significant figures for both measured 
and calculated values of  time and displacement. 

How well do the theoretical and experimental values compare?
 

(e) Graph both the experimental and theoretical displacements 
vs. time on the same graph.  How do the results look?  Discuss 
and try to explain reasons for any differences you see between the 
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two graphs. If the agreement is less than convincing adjust the 
parameters of the model until the fit is acceptable. 

After you get an acceptable fit upload the spreadsheet with the 
graphs to WebCT.

(f) On the basis of your graphs, do you think your spring-mass 
system underwent simple harmonic motion?  Why or why not?
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SESSION TWO:    SIMPLE HARMONIC MOTION FOR THE MASS & 
SPRING

20 min
 Problem Review
20 min
Theoretical Confirmation of SHM for a Spring-Mass System

You should be able to show that a sinusoidal motion will occur for an oscillating 
mass-spring system if:

(1) the one dimensional force exerted by the spring on a mass has the form F= –kx 
where k is the spring constant, and

(2) Newton's second law holds.

Using these assumptions you can show mathematically that the following equation 
will hold:

   x(t)= Xmax cos (ωt + φ)

where 
φ = the phase angle indicating the displacement, x(0), at t = 0 s
x(t) = displacement of the spring from equilibrium at time t
Xmax = amplitude of the system ,i.e., its maximum displacement 

ω = the angular frequency of oscillation given by  

€ 

ω =
k
m

       where k is the spring constant and m is the oscillating mass
 

✍ Activity 14-6: Displacement vs. Time – Theoretical
(a) Show that the equation of motion (F = ma when written out) of 
a mass m attached to a spring of force constant k is given by

 

€ 

m d2x
dt 2  =  – kx

Hint: (1) What are the definitions of instantaneous velocity and 
acceleration in one dimension? (2) x(t) is really just x expressed in 
a form that reminds us that x changes with t.
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Note: This type of equation, which occurs frequently in physics, is known as a differential 
equation.

(b) Show that if 

€ 

d cos  (ωt +  φ)
dt

=  –ω sin  (ωt +  φ)
 and

 

€ 

d sin (ωt +  φ)
dt

=  ω cos (ωt +  φ)
 

 where ω2 =k/m
then the equation x(t)= Xmax cos (ωt + φ) 

satisfies the equation

€ 

m d2x
dt 2  =  – kx  

40 min
A Mathematical Model for the Mass-Spring System.
You have confirmed the fact that the theoretical equation describing a mass-spring 
system is given by

  x(t) = Xmax cos (ωt + φ)

where 
φ = the phase angle indicating the displacement, x(0) at  t = 0 s
x(t) = displacement of the spring from equilibrium
Xmax =  amplitude of the system i.e., its maximum displacement 

ω = the angular frequency of oscillation given by 

€ 

ω =
k
m

 

       where k is the spring constant and m is the oscillating mass

In this activity you will construct a spreadsheet model to explore the behaviour of 
mass-spring systems for different values of  the four parameters Xmax, φ, k, and m.  
You can start by using the Excel Modelling Worksheet and setting appropriate col-
umn headings and parameter labels as shown in the illustration below.
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To construct your mathematical model you should do the following:

1. Open the modelling worksheet and label the parameters, column headers, etc. as 
shown above.

2. Get set to do calculations every 1/20th of a second for two seconds by entering 
times of 0.000 s, 0.0500 s, etc. in the time column.

3. Enter the equation of motion 

€ 

x(t) = X cos k
m
t + φ

 

 
 

 

 
 

in the x-th (x theoretical column).  Get the values of k, m, etc. from cells C1, C2, C3, 
and C4.  Don't forget to call on these cells with absolute references i.e. $C$1, $C$2, 
etc.

4. Place reasonable values for the four parameters in the appropriate cells.  The val-
ues in the sample table will get you started.  Once this is done you should see a co-
sine function on the graph.
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✍ Activity 14-7: The Spreadsheet Model–Outcomes
(a) Use your simulation to graph for Xmax = 1.0000 m, k= 
10.00000 N/m,  m=0.2000 m, and ϕ =1.0000 rad in the space be-
low.  Sketch the graph in the space below.

 

(b) What do you predict will happen to the graph if Xmax is de-
creased to 0.5000 m?  Sketch your prediction on the graph below, 
using a dotted line.  Explain the reasons for your prediction. Now, 
try decreasing it in your simulation and sketch the result on the 
same graph, using a solid line.  Beware: Do your sketches on the 
same scale – the Excel program might rescale your graph auto-
matically!

t (s)
0.5 1.0 1.5 2.0

x
(t

) 
(m

)

0.0

1.0

0.5

0.0

–0.5

–1.0
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(c) Reset Xmax to 1.0000 m.  What do you predict will happen to 
the graph if k is decreased to 5.0000 N/m?  Again using a dotted 
line, sketch your prediction on the graph below.  Explain the rea-
sons for your prediction.  Now try decreasing it in your simulation 
and sketch the result using a solid line.  Beware: Do your 
sketches on the same scale – the Excel program might rescale 
your graph automatically.

t (s)
0.5 1.0 1.5 2.0

x
(t

) 
(m

)

0.0

1.0

0.5

0.0

–0.5
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(d) Reset k to 10.000 N/m.  What do you predict will happen to the 
graph if m is decreased to .1000 kg?  Sketch your prediction be-
low.  Explain the reasons for your prediction.  Try decreasing it in 
the simulation and sketch the result.  Beware: Do your sketches 
on the same scale – the Excel program might rescale your graph 
automatically.
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x
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(e) Reset m to its original value.  What do you predict will happen 
to the graph if ϕ  is decreased to 0.5000 rad?  Sketch your predic-
tion below, and explain the reasons for your prediction.  Try de-
creasing it in your simulation and sketch the result.  Beware: Do 
your sketches on the same scale – the Excel program might res-
cale your graph automatically.

t (s)
0.5 1.0 1.5 2.0

x
(t

) 
(m

)

0.0

1.0

0.5

0.0

–0.5

–1.0

(f)  Find the value for the spring constant k from the value of ω 
and m you found for the spring-mass system of session one.
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SESSION THREE:    THE SIMPLE PENDULUM
20 min
 Course evaluation and/or problem review
50 min

What Does the Period of a Pendulum Depend On?

When a mass suspended from a string is raised and released it oscillates.  The oscil-
lating motion of a simple pendulum has been used throughout history to record the 
passage of time.  How do clock makers go about constructing a pendulum with a 
given period?  Why does a pendulum oscillate?  What factors affect its period?  For 
the following activity, you will need:

• Pendulum parts including:
bobs (small round objects with different masses)-
string-
stand to suspend the pendulum

• Timing devices: (your choice, if available)
a stop watch
a photogate timing system
a motion detection system
a video analysis system
a rotary motion detector

✍ Activity 14-8: Factors Influencing Pendulum Period 
(a) Watch the oscillation of a pendulum carefully.  Sketch  the 
forces on the bob when the pendulum is at its maximum angular 
displacement and at zero displacement.

!max

The amplitude is 
the maximum 
angle in the 
swing.

At the bottom of the 
swing the angular 
displacement is 
zero: 

!! = 0

.

(b) Explain why the pendulum oscillates back and forth when the 
bob is lifted through an angle θmax and released.
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(c) List all the factors that might conceivably affect the period of a 
pendulum in the table below.  Indicate for each factor whether or 
not you expect it to matter.  Feel free to discuss your ideas with 
your classmates and debate the issues.

Correct?increase   decrease   none Reasons for your predictionFactor

(d)  Play with the pendulum factors and see which factors obvi-
ously matter.  Summarize your findings in the space below and 
indicate in the table above which of your predictions were correct.

(e) [7 pts]  Design an experiment to check the possible dependence 
of the period of a pendulum on its length in a much more careful 
quantitative way.  You have a choice of a number of timing de-
vices to complete this task.  Regardless of which device you use 
you should design your experiment to be as accurate as possible 
with your time measurements.  Document your experiment on the 
8-page mini-lab notebook that we provide.  Hint:  Be sure to use 
some very short lengths and some much longer lengths for your 
pendulum.
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The lab write up should contain the following

1. Title

• Experiment Name

• Date

• Your name and your partners’

2. Experiment’s objective

3. Description of the apparatus and procedure. A simple dia-
gram that is labelled is needed here.

4. Experimental results. 

• Put data in a neat table. Include uncertainty esti-
mates.

• Write the results Directly into the table as you take 
the data. Avoid recopying data from scrap paper.

• Do not erase data. If you need make a correction, cross 
out the data and rewrite the correct values.

5. Calculations and results. 

• Display results graphically if possible. 

• Show sample calculations.

6. Conclusions: How do your results compare with your predic-
tion?

40 min
Should the Pendulum Really Undergo SHM?  
In your theoretical consideration of the mass-spring system, you showed mathemati-
cally that, if the restoring force is proportional to the displacement but opposite in 
direction, then one would expect to see the mass undergo simple harmonic motion.  
The restoring force for the spring has the form F=-kx.  To what extent does the re-
storing force for a simple pendulum which oscillates at a small angle of displacement 
have a similar mathematical form to that of the mass on a spring?  In this next ac-
tivity you will derive the equation of motion for a simple pendulum.  This equation is 
very similar to the equation of motion of the mass-spring system, and so it will be 
clear that the simple pendulum ought to undergo a simple harmonic motion in which 
its period of motion is independent of the mass of the pendulum bob.

In order to derive the equation of motion you should recall the when a mass, m, ex-
periences a torque, it will undergo an angular acceleration given by the equation
    τ  =  Iα

You can look at the form of this equation for a simple pendulum when the angle of 
the oscillation is small.  You should find that it is quite similar to the equation for 
the mass-spring system.
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✍Activity 14-9: The Pendulum Equation of Motion
(a)What is the restoring force on the pendulum bob as a function 
of m, g, and the displacement angle θ?

!

mg

L

!

Frest

FT

FT = mg cos !

(b) The small angle approximation: The value of θ in radians and 
the value of sinθ are quite close to each other for small values of 
θ.  Use a spreadsheet or scientific calculator to find the angle in 
radians for which θ and sin θ vary from each other by 1%.  Use 
three decimal places in your calculations.

(c) Calculate the value in degrees of the angle you have just calcu-
lated in radians.

(d) Show that, if the maximum angle through which the pendu-
lum swings is small enough so that θ ≈ sin θ (say to within about 
1%), then the restoring force can be expressed (to within 1%) by F 
= –mgθ.

(c) Show that  the torque experienced by the mass is given by the 
expression τ = – mgθL (where L is the length).
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(d) What is the rotational inertia of the simple pendulum as a 
function of its mass, m, and length, L?

(e) Use the relationship between τ, I, and α to show that the 
equation of motion for the angular displacement of the pendulum 
is given by  [you fill in the blank]

  

(g) How does this compare to the equation of motion you derived 

for the mass-spring system given by 

€ 

m d2x
dt 2  =  – kx

  

What is the same?  What is different?

(h) Refer to the solution of the spring-mass equation of motion to 
write down the solution to the pendulum equation and show why 
its solution is given by

Hint: In the pendulum equation of motion the term θ plays the 
role of x in the mass-spring equation and the term (mg/L) plays 
the role of the spring constant k.

(i) Show that if the period, T, of a mass-spring system is given by 
the equation 
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  Spring-Mass:  

€ 

T = 2π m
k

then the period of the pendulum ought to be given by

  Pendulum:  

€ 

T = 2π L
g

(j) How does this expression for the period compare to the one 
which you found experimentally in Activity 14-7 (e)?

(k) Many people are surprised to find that the period of a simple 
pendulum does not depend on its mass.  Can you explain why the 
period of a simple pendulum doesn't depend on its mass?  Hint: 
Can you explain why the acceleration of a falling mass close to 
the surface of the earth is a constant regardless of the size of the 
mass?
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