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UNIT 2:  MEASUREMENT AND UNCERTAINTY
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THE
NORMAL

LAW OF ERROR
STANDS OUT  IN THE

EXPERIENCE OF HUMANS
AS ONE OF MOST POWERFUL

GENERALIZATIONS OF NATURAL
PHILOSOPHY  ◊  IT SERVES AS THE

GUIDING  INSTRUMENT  IN RESEARCHES
IN THE PHYSICAL AND SOCIAL SCIENCES AND

IN MEDICINE, AGRICULTURE AND ENGINEERING ◊
IT IS AN INDISPENSABLE TOOL FOR THE ANALYSIS AND THE

INTERPRETATION OF THE DATA OBTAINED BY OBSERVATION & EXPERIMENT

Adapted from James Gleick's
Chaos: Making a New Science, 1988

OBJECTIVES 
 

1. To define fundamental measurements for the description 
of motion and to develop some techniques for making indi-
rect measurements using them.

2. To learn how to quantify and minimize sources of ran-
dom uncertainty so that the precision of measurements can 
be enhanced.

3. To learn how to compensate for systematic error in 
measurements so that accuracy can be improved.

4. To explore the mathematical meaning of the standard 
deviation and standard error associated with a set of 
measurements.
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OVERVIEW
20 min Go over problems and problem grading procedures
5 min

The major goal of this unit is to help you determine 
whether or not the results of a given experiment are com-
patible with theory. 

Initially in this course you will focus on the task of devel-
oping a mathematical description of the motion of objects.  
The study of how objects move is known as kinematics and 
it can be conducted using only two fundamental types of 
measurements – length and time. For instance, if you are 
interested in determining how fast a pitched baseball is 
moving in a horizontal direction, you need to do several 
things: define horizontal speed (i.e., the meaning of "how 
fast") in terms of distance moved in space and time-of-
flight; measure the distance and time-of-flight of a moving 
baseball; and calculate the speed of the baseball from your 
measurements.  (Although physicists and philosophers can 
spend countless hours discussing concepts of space and 
time, for the purposes of this course we will assume you 
have a sense of what they are without formal definition.)

The measurement of the speed of a pitched baseball is, in 
reality, an indirect measurement.  Almost any quantity 
has to be measured indirectly under certain circum-
stances.  In this unit, you will devise methods for making 
both direct and indirect measurements of distance.  This 
should provide first-hand experience with an age old ques-
tion about the measurement process: Is it possible to make 
exact measurements?

You will also make direct measurements of time by drop-
ping a ball repeatedly.  Many sources of variation of the 
time-interval data will be explored including mistakes, 
systematic error and random uncertainty.  This timing 
activity will enable you to study formal statistical methods 
for determining the precision of measurements by quanti-
fying the error and uncertainty associated with a set of 
repeated measurements subject to random variation.  Fi-
nally, the mathematics of the Gaussian distribution used 
to describe your time measurements will be applied to a 
description of the counting rate due to beta particles com-
ing into a Geiger tube from a radioactive source during 
repeated time intervals.
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SESSION ONE:  DIRECT AND INDIRECT MEASUREMENTS
20 min

Measuring Lengths Directly with a Ruler
We are interested in determining the number of significant 
figures in length measurements you might make.  How is the 
number of significant figures determined?  Suppose a su-
preme humanoid entity (SHE) could tell us that the "true" 
width of a certain car key in centimetres was:

 2.435789345646754456540123544332975774281245623... etc. 

(Sorry but SHE got tired of announcing digits!)  If we were 
to measure the key width with a ruler that is lying around 
the lab, the precision of our measurement would be limited 
by the fact that the ruler only has lines marked on it every 
0.1 cm.  We could estimate to the nearest 1/100th of a cen-
timetre how far the key edge is from the last mark. Thus,  
we might agree that the best estimate for the width of the 
key is 2.44 cm.  This means we have estimated the key 
width to three significant figures. 

If SHE announces that the width of a pair of sun glasses is 
13.27655457787654267787... cm, then upon direct measure-
ment we might estimate the width to be 13.28 or 13.27 or 
13.26 cm.  In this case the estimated width is four significant 
figures.  Obviously, there is uncertainty about the "true" 
value of the right-most digit.

MY RIGHT-MOST DIGIT IS OF 

GREAT VALUE TO ME THANK

YOU VERY MUCH . . .

Usually the number of significant figures in a measurement  
is given by the number of digits from the most certain digit 
on the left of the number up to and including the first un-
certain digit on the right.  In reporting a number, all digits 
except the significant digits should be dropped.  The world 
is cluttered with meaningless uncertain digits.  Help 
stamp them out!
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Note: If you have not encountered the idea of significant digits 
before, you can look up references to this concept in a physics 
text.

Let's do some length measurements to find out what fac-
tors might influence the number of significant figures in a 
measurement.  You will need:

  • A ruler (with a metric scale)
  • A rectangular piece of cardboard or paper

Instructor: Cut the cardboard ends so they are slightly non-parallel.

✍ Activity 2-1: Length Measurements
(a) What factors might make a determination of the "true" length 
of an object measured with your ruler uncertain?

(b) Measure the length of the piece of cardboard with your ruler 
several times and create a table in the space below to list the 
measurements.  Don't forget to include units – nag, nag!  

 

(c) In general, when a series of measurements is made, the best 
estimate is the average of those measurements.  (See pages C-1 
and C-2 in the Appendices for more detail.)  In the space below 
list the minimum measurement, the maximum measurement, 
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and the best estimate  for the length of your cardboard.  Include 
your units!

 l (min) =

 l (max) =

 l (best est.) =

(d) How many significant figures should you report in your best 
estimate?  Why?

(e) For your piece of cardboard, what limits the number of sig-
nificant figures most – variation in the actual length of the card-
board or limitations in the accuracy of the ruler?  How do you 
know?

It's clearly impossible to make even the simplest direct dis-
tance measurements without some uncertainty.  To be able 
to do so, you would have to have a ruler with an infinite 
number of lines ruled on it with each line being an impos-
sibly short distance from its neighbours! 

10 min

10 min 
Statistics – The Inevitability of Uncertainty
In common terminology there are three kinds of "errors": 
(1) mistakes or human errors, (2) systematic errors due to 
measurement or equipment problems and (3) inherent un-
certainties.
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✍ Activity 2-3: Error Types
(a) Give an example of how a person could make a "mistake" or 
"human error" while taking a length measurement.

(b) Give an example of how a systematic error could occur be-
cause of the condition of the ruler when a set of length measure-
ments are being made.

(c) What might cause inherent uncertainties in a length meas-
urement?

With care and attention, it is commonly believed that both 
mistakes and systematic errors can be eliminated com-
pletely.  However, inherent uncertainties do not result 
from mistakes or errors.  Instead, they can be attributed in 
part to the impossibility of building measuring equipment 
that is precise to an infinite number of significant figures.  
The ruler provides us with an example of this.  It can be 
made better and better, but it always has an ultimate limit 
of precision. 

Another cause of inherent uncertainties is the large num-
ber of random variations affecting any phenomenon being 
studied.  For instance, if you repeatedly drop a baseball 
from the level of the lab table and measure the time of 
each fall, the measurements will most probably not all be 
the same.  Even if the stop watch was gated electronically 
so as to be as precise as possible, there would be small fluc-
tuations in the flow of currents through the circuits as a 
result of random thermal motion of atoms and molecules 
that make up the wires and circuit elements.  This could 
change the stop watch reading from measurement to 
measurement.  The sweaty palm of the experimenter could 
cause the ball to stick to the hand for an extra fraction of a 
second, slight air currents in the room could change the 
ball's time of fall, vibrations could cause the floor to oscil-
late up and down an imperceptible distance, and so on.

20 min

Page 2-6 Workshop Physics Activity Guide SFU 1067

© 1990-93 Dept. of Physics & Astronomy, Dickinson College   Supported by FIPSE (U.S. Dept. of Ed.) and NSF
Modified for SFU by N. Alberding, 2005, 2007.

Uhhh.!
I'm late because my timing!

device is inaccurate.!
Yeah....that's it.



Repeated Time-of-Fall Data
You and your partners can take repeated data on the time 
of fall of a baseball and eventually share it with the rest of 
the class.  In this way, the class can amass a lot of data 
and study how it varies from some average value for the 
time-of-fall.  For this activity you will need:

  • A ball
  • A stop watch
  • A 2-metre stick

✍ Activity 2-4: Timing a Falling Ball 
(a) Drop the ball so it falls through a height of exactly 2.0 m at 
least 20 times in rapid succession and measure the time of fall to 
two significant figures.  Be as exact as possible about the height 
from which you drop the ball; we will be compiling data from the 
entire class in a later activity.  Record the data in the table below 
and enter it in a computer spreadsheet.
 

    
(b)  Use a spreadsheet to determine the average time-of-fall, 
< t >, for your 20 measurements.  Report the average value in 
the space below using three significant figures.  Note: Be sure to 
save your spreadsheet as you will be using it again.

25 min

The Standard Deviation as a Measure of Uncer-
tainty 
How certain are we that the average fall-time determined 
in the previous activity is accurate?  The average of a 
number of measurements does not tell the whole story.  If 
all the times you measured were the same, the average 
would seem to be very precise.  If each of the measure-
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ments varied from the others by a large amount, we would 
be less certain of the meaning of the average time.  We 
need criteria for determining the certainty of our data.  
Statisticians often use a quantity called the standard de-
viation as a measure of the level of uncertainty in data.  In 
fact, almost all scientific and statistical calculators and 
spreadsheets have a standard deviation function.  The 
standard deviation is usually represented by the Greek let-
ter σ (sigma; since sigma sometimes has other meanings in 
physics, we will designate the standard deviation by using 
a subscript: σsd).  σsd has a formal mathematical definition 
which is described in Appendix C.  The value of σsd is often 
used to measure the level of uncertainty in data. 

In the next activity you will use the spreadsheet to calcu-
late the value of the standard deviation for the repeated 
fall-time data you just obtained and explore how the stan-
dard deviation is related to variation in your data.  In par-
ticular, you will try to answer this question: What percent-
age of your data lies within one standard deviation of the 
average you calculated?

✍ Activity 2-5: Standard Deviation
(a) Open the spreadsheet containing the time-of-fall data you 
collected in Activity 2-4.  Calculate the standard deviation of the 
set of 20 measurements.  (See Appendix C for instructions on 
how to use spreadsheet functions to calculate quantities such as 
σsd using a spreadsheet.)  Write the calculated value σsd with 
units in the space below using three significant figures.  


 
 σsd  =                                                                                                

(b) Refer to the average you reported in Activity 2-4(b) and calcu-
late the average plus the standard deviation and the average 
minus the standard deviation.  Again report three significant 
figures and units.

             < t > + σsd  =    < t > – σsd  =  

(c) Use the sort command in your spreadsheet and determine the 
number of your data points that lie within ±σsd of the average 
you reported in Activity 2-4(b).  Write the number of data points 
in the space below and calculate the percentage of data points 
lying within a standard deviation of the average.
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(d) Combine your results with those obtained by the rest of the 
class and then copy these results into the table below.  Once 
again use three significant figures.  Calculate the average time 
and the average % of data points which lie between t–σsd and t
+σsd.

# Investigators <t>(s) !sd(s) %Data ± ! sd

Avg. Avg.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

(e) Study the last column, which represents the percentage of 
data points lying within one standard deviation of the average.  
What does the standard deviation, σsd, tell you about the ap-
proximate probability that another measurement will lie within 
±σsd of the average?

Instructor: Conduct a class discussion. By pooling data, the class should find that there is about a 68% chance  
of a given data point lying within ± s of the average.  THIS GIVES US AN IMPORTANT INTERPRETATION 
OF THE SIGNIFICANCE OF THIS STRANGE SIGMA OR STANDARD DEVIATION  FACTOR. Ask who is  
the most accurate. The most precise. Why?
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SESSION TWO:  RANDOM,SYSTEMATIC VARIATION AND THE NORMAL 
DISTRIBUTION

30 min Go over problems and grading criteria carefully
35 min

The Time-of-Fall Frequency Distribution
Suppose you want to know more about the variation from 
the average of your ball's time-of-fall data.  You might 
characterize it by using the common statistical quantity 
called the standard deviation, as you did in the last ses-
sion.  Another approach is to plot a type of graph known as 
a histogram or frequency distribution and study its shape.  
A frequency distribution of the fall times shows how often 
you recorded each time.  

Suppose you dropped a ball from a tall building 54 times 
and recorded no falls between 20.0 and 20.9 seconds, but 
on six different trials you recorded times between 21.0 and 
21.9 seconds.  You also recorded six times between 22.0 
and 22.9 seconds and so on as shown in the table below.  
Then the frequency distribution or histogram would look 
like the one shown in diagram A on the left.

How to Plot a Frequency Distribution

Since a frequency distribution of the fall times shows how 
many times you recorded each time, this distribution can 
be drawn by organizing your data as follows:

1. Load your spreadsheet file with the data to be plotted into the 
computer memory.  (See Appendix A for details)

2. Sort the column of data from the lowest time to the highest 
time.  (See Appendix A for details)

3. Count the frequency of occurrence of each quantity that was 
recorded.  For example, if you recorded a time of 0.45 seconds 
five different times, the frequency of 0.45 seconds is 5.

4. The horizontal axis of your graph indicates the quantities 
whose frequencies you are graphing; the vertical axis of your 
graph gives the frequencies.  Above each quantity on the hori-
zontal axis, draw a rectangle whose height corresponds to the 
frequency of that quantity.  Repeat this step for each quantity 
measured.

As an example, consider a very simple frequency distribu-
tion.  Imagine that you have caught ten fish.  Of these ten, 
four are 3" long, two are 4" long, and four are 5" long.  The 
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Fall Time (s) Frequency

20.0—20.9 0

21.0—21.9 6

22.0—22.9 6

23.0—23.9 6

24.0—24.9 6

25.0—25.9 6

26.0—26.9 6

27.0—27.9 6

28.0—28.9 6

29.0—29.9 6

30.0—30.9 0



frequency distribution would appear as follows:

4. The horizontal axis of your graph indicates the quantities 

whose frequencies you are graphing; the vertical axis of your 

graph gives the frequencies.  Above each quantity on the 

horizontal axis, draw a rectangle whose height corresponds 

to the frequency of that quantity.  Repeat this step for each 

quantity measured.

As an example, consider a very simple frequency 

distribution.  Imagine that you have caught ten fish.  

Of these ten, four are 3" long, two are 4" long, and four 

are 5" long.  The frequency distribution would appear 

as follows:

! Activity 2-7: Frequency Distribution for Your 

Time-of-fall Data 
(a) Draw a frequency diagram (known as a histogram) 

representing your time-of-fall  data for the ball in the grid 

below. 

      

(b) Next, using a different colour 

of pen or pencil sketch in the 

results of the rest of the class in 

the histogram above.

How does the shape of the class 

frequency distribution above 

compare with the shape shown 

in Appendix C on page C-6? !

Does the variation in the time of 

fall data seem "normally 

distributed"? How does it 

compare to your prediction in 

Activity 2-6? !Explain.
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✍ Activity 2-7: Frequency Distribution for Your 
Time-of-fall Data 
(a) Draw a frequency diagram (known as a histogram) represent-
ing your time-of-fall data for the ball on the grid. 

(b) Next, using a different colour of pen or pencil sketch in the 
results of the rest of the class in the histogram above.
How does the shape of the class frequency distribution above 
compare with the shape shown in Appendix C on page C-6?  Does 
the variation in the time of fall data seem "normally distrib-
uted"? How does it compare to your prediction in Activity 2-6? 
 Explain.

Note: As you will observe later, a normal distribution of varia-
tion in a series of measurements can lead to a bell-shaped curve 
when the variations in measurement are the result of a number 
of smaller variations which occur randomly from measurement 
to measurement.  Although the underlying events are random, 
and hence unpredictable, the nature of the variation becomes 
predictable.  Puzzled?  Stay tuned, we'll tackle this idea again.

45 min
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t (s) Freq. t (s) Freq.

Fall time

F
re

q
u

en
cy

Time (seconds)

20

18

16

14

12

10

8

6

4

2

0



Systematic Error – How About the Accuracy of Your 
Timing Device and Timing Methods?
As the result of problems with your measuring instrument 
or the procedures you are using, each of your measure-
ments may tend to be consistently too high or too low.  If 
this is the case, you probably have a source of systematic 
error.  There are several types of systematic error.

Most of us have set a watch or clock only to see it gain or 
lose a certain amount of time each day or week.  In ordi-
nary language we would say that such a time keeping de-
vice is inaccurate.  In scientific terms, we would say that it 
is subject to systematic error.  In the case of a stopwatch or 
digital timer that doesn't run continuously like a clock, we 
have to ask an additional set of questions.  Does it start up 
immediately?  Does it stop exactly when the event is over?  
Is there some delay in the start and stop time?  A delay in 
starting or stopping a timer could also cause systematic 
error.

Finally, systematic error can be present as a result of the 
methods you and your partner are using for making the 
measurement.  For example, are you starting the timer ex-
actly at the beginning of the event being measured and 
stopping it exactly at the end?  Are you dropping the ball 
from a little above the exact starting point each time?  A 
little below?

It is possible to correct for systematic error if you can 
quantify it.  Suppose that God, who is a theoretical physi-
cist, said that the distance in metres, y, that a ball falls 
after a time of t seconds near the earth's surface in most 
places is given by the equation

  
    

€ 

y =
1
2

gt2

where g is the gravitational strength (equal to 9.8 N/kg).  
(In this idealized equation the effects of air resistance have 
been neglected.)

Does the theoretical value for the time-of-fall lie within the 
standard error of your average measured value?  In the 
activity that follows, you should compare your average 
time-of-fall with that expected by theory. If you determine 
that a systematic error probably exists, can you devise a 
way to determine its cause and magnitude?  
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✍ Activity 2-8: Is There Systematic Error in the 
Data?
(a) Measure the distance of fall and calculate the theoretical, God 
given, time-of-fall in the space below.

(b) Does the theoretical value lie in the range of your own aver-
age value with its associated uncertainty?  If not, you probably 
have a source of systematic error.

(c) If you seem to have systematic error, explain whether the 
measured times tend to be too short or too long and list some of 
the possible causes of it in the space below.

 

(d) Devise a method to find the causes of your systematic error.  
Explain what you did in the space below.

20 min Go over problems that are due.
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15 min
The Random or Drunkard’s Walk in One Dimension
Let's return to the question of how the accumulation of 
many small random events can lead to a pattern of varia-
tions in a series of measurements which is "normally dis-
tributed" and thus has a histogram which looks like a bell-
shaped curve.  To do this we are going to consider a series 
of measurements on the locations of drunkards in an alley.  
If the drunkards leave a bar in the centre of the alley and 
then make many small steps at random where will we find 
them sleeping in the morning?  Assume that during each 
second of time that passes a drunk has an equal probabil-
ity of staggering to the right, standing still, or staggering 
to the left. 

✍ Activity 2-9: The Random Walk — Predictions
(a) If a drunk leaves the bar and staggers around taking 30-cm 
long steps to the right and to the left at random, what will the 
drunk's average distance in metres from the bar be after he has 
had a chance to take many steps?

    

(b) Is it more likely that a drunk will be close to the bar or far 
away?  Why?

(c) Suppose a drunk has had enough time to take 20 steps.  Is it 
possible to find her 20 steps from the bar in either direction?  Is 
it probable?  Explain!

Let's simulate the drunkard’s walk scenario and take some 
data. In this exercise you are to come out of the bar and try 
to take twenty steps at random.  Where are you after at-
tempting twenty steps?  Each possible step that the 
drunkard might take is analogous to a source of variation 
in a measurement in the physics laboratory.  For example, 
in dropping a ball there might be twenty variables that 
would effect its rate of fall, e.g., air currents, inconsistent 
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timing, the hand quivering upon release, etc. etc.  For the 
observations that follow you will need:

 • 1 die (six-sided)
 • OPTIONAL: a case of beer and an alley

✍ Activity 2-10: The Random Walk – Simulated Ob-
servations

(a) Imagine that you have just come out of a bar at the centre of a 
narrow alley.  Roll your die.  For 1 or 2 stagger one step to the left. 
For 3 or 4 just twirl around in the same place.  For 5 or 6  take a 
step to the right.  Now where are you?  Starting from the new lo-
cation roll the die again to take another step.  Do this a total of 20 
times.  Where are you after twenty tries?  Eight to the left?  Three 
to the right? etc.  Repeat the procedure twice more.
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Step #
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 20

(b) For each "walk" you took in part (a), mark your final position 
on the histogram below.  Also mark the final locations of other 
drunks in your class.  See note below for how to use a spread-
sheet to simulate your walk more efficiently.

N
o

. o
f 

D
ru

n
k

s

No. of Steps Left
0 5 15

10

8

6

4

2

0

No. of Steps Right
–5–10–15 10

(c) Does the variation in the data look as if it will be "normally 
distributed" when each value has an uncertainty that results 
from the accumulation of many random unpredictable steps?
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Simulating the Drunkard’s Walk with a Spreadsheet

Using a spreadsheet to help you take your imaginary walks from the 
bar is much faster than rolling a die.  Most spreadsheets have a built 
in random function that generates a random number which is greater 
than or equal to zero and less than 1.  By manipulating this function 
and finding the integer value of the resulting numbers, it is easy to 
generate an integer with values of -1, 0, and +1.  The equations that 
work for a typical spreadsheet are shown below.

 
By entering these equations into a spreadsheet and recalculating you 
can simulate multiple 20 second walks.  You can get the spreadsheet 
to recalculate a new walk by pressing -= on Mac systems or F9 on 
Windows. Each simulated walk should take a mere fraction of a sec-
ond.    

5 min

Natural Radioactivity and Statistics
What happens when the particles coming from radioactive 
materials are counted during a time interval such as a sec-
ond?  What variation might we expect in repeated meas-
urements?  In particular, does the shape of the frequency 
distribution of the number of counts per second look like that 
of the repeated measurements of time for a falling ball?

Before exploring these questions, let's briefly review radio-
activity.  Radioactivity is understood as a phenomenon in 
which neutrons and protons in a nucleus lose potential en-
ergy.  Every once in a while, a nucleus in a collection of ra-
dioactive atoms ejects either a gamma ray, a beta particle, 
or an alpha particle.  Radioactivity is a statistical process 
in which a series of slight disturbances of the nucleus lead 
to a decay.
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Heavy elements such as uranium and thorium occur natu-
rally in rocks and soil.  Even a few tiny grains of such an 
element can contain hundreds of billions of nuclei that are 
radioactive.  The tiny particles ejected from a sample of 
radioactive matter can be counted by an electronic device 
known as a Geiger tube.

5 min
Purpose of the Nuclear Counting Experiment
If a given radioactive nucleus lives on the average for bil-
lions of years before undergoing decay, then a collection of 
many such nuclei will appear, on the average, to give off 
the same number of particles each second.  What will hap-
pen if you count the radiation coming into a Geiger tube for 
one second and then repeat the measurement 20 times, 
100 times, ..., 1000 times? Do you expect to see variations?

In this experiment you will count the number of beta parti-
cles coming into a Geiger counter during a fixed time in-
terval.  Then you'll do it again and again and again and 
again, etc.  You can use your measurements to find the av-
erage value of your counts per time interval, calculate the 
standard deviation, and produce a graph of the frequency 
distribution.  The main point of the experiment and its 
analysis is to compare the shape of the frequency distribu-
tion curve for beta particles per time interval to that for fal-
ling balls.  Are they similar?  What happens when you take 
thousands of "data points?"  What does the shape of the fre-
quency distribution look like then?   

For this experiment you will need a radioactive source, a 
Geiger tube, and a computer-based laboratory system.  The 
computer system can keep track of particles coming into a 
Geiger tube automatically.  This allows you to take large 
quantities of data painlessly and thus continue your explo-
ration of the characteristics of repeated measurements on 
quantities subject to random fluctuations. 

65 min
Becoming Familiar with the Apparatus to Measure 
Counts per Interval.
In the exploration of the statistics of radioactivity, you can 
use a Computer-Based Laboratory (CBL) set up as a radia-
tion counting system.  You will need the following equip-
ment:

 • Radiation Monitor 
 • a computer interface
 • a computer
 • radiation monitoring software (Logger Pro)
 • a small radium, uranium, or thorium source
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Doing the Experiment
First you will be determining the counts/interval for 
twenty intervals and analysing the data statistically in the 
same way you analysed the time-of-fall data for the ball.  
Next you will let the computer plot the frequency distribu-
tion histogram for you automatically as it collects the data.  
This will allow you to obtain a frequency distribution for 
several thousand repeated counts/interval measurements.  
This in turn will enable you to tell whether or not the bell 
shaped curve is a reasonable shape for the frequency dis-
tribution.

1. Plug the radiation monitor into the Dig/Sonic 1 input of the 
Labpro 

2. Open up the “L01001a (Counts vs Time).cmbl” setup file in 
Logger Pro. Choose “Radiation Monitor” not “Student Radiation 
Monitor” as the sensor input.

3. Press the Start button and see if the detector system is work-
ing.  Move position the radiation source to different positons 
near the detector and note the effect on the count rate. The setup 
file collects data for 20 one-second intervals. This can be changed 
by choosing “Experiment...Data collection” from the menu but 
leave it for now. The program displays a table of counts/interval. 
and a graph of counts vs time.

4.  Adjust the position of the radiation source so that you get 
about 20 counts per interval.

Once the distance from source to detector is adjusted to 
give about 20 counts in the chosen time interval, the source 
and the Geiger tube should not be bumped or disturbed.

✍ Activity 2-11: Is There Random Variation in the 
Nuclear Counting Data? (Groups of 3)
(a) Count the radiation coming through the Geiger tube for 20 

pre-set time intervals of one second using the L01001a.cmbl 
setup. Copy the data from the LoggerPro into the next table.    
Record how many times you got zero counts per interval, 1 
count per interval and so on.  Then plot the frequency distri-
bution of your results on the grid. 
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Figure 2-1: A Radiation Monitoring System

One radioactive source will be shared by 
the groups on a table.
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(b) Determine the average counts/interval and standard devia-
tion from the computer screen or if necessary use a spreadsheet 
or scientific calculator to determine the standard deviation.    
List the values in the space below.

(c) Determine the percentage of your data points that lie within 
±σsd of the average.  Show your calculations below. 

(d) How does this percentage compare with that you found for 
the falling ball data?  What is the "practical meaning" of the 
standard deviation, σsd, for the nuclear radiation data?

(e) Finally, we set the computer to monitor several thousand re-
peated counting intervals with an average count of about 20. Use 
the setup file L021001e (Histogram).cmbl for this.  The fre-
quency distribution for this large number of data points can be 
displayed on the computer screen automatically.  After you get a 
graph of the frequency distribution, upload a copy to WebCT as-
signments. (You can sketch a copy in the space below.)
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(f) Study and comment on the shape of the resulting histogram.  
Does it look like a bell shaped curve?  Does nuclear counting 
seem to have a random variation?  Explain 

 Students should notice that when a large amount of data is taken the average and the standard devia-
tion hardly changes but that the frequency distribution looks much "smoother."
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Confidence Intervals and Reporting Uncertainty

Standard Deviation of the Mean 
To get a good estimate of some quantity you need several 
measurements, and you really want to know how uncertain 
the average of those several measurements is, since it is 
the average that you will write down (as a best estimate).  
This uncertainty in the average is known as the standard 
deviation of the mean  or S.D.M. for short.

It is this quantity that answers the question, "If I repeat 
the entire series of N measurements and get a second aver-
age, when do I have a 68% confidence that this second av-
erage to come close to the first one?"  The answer is that 
you should expect a second average (that results from redo-
ing the set of measurements) to have a 68% probability of 
lying within one S.D.M. of the first average you deter-
mined.  Thus, the S.D.M. is sometimes referred to as a 68% 
confidence interval. 

Once you know the Standard Deviation (S.D.) it is simple 
to calculate an estimate for the standard deviation of the 
mean or S.D.M.  This is simply the standard deviation of 
the sample of N measurements divided by the square root 
of N.  

    

€ 

S.D.M . =
S.D.

N
=

σ

N

It is also referred to at times as the standard error.  Since 
the S.D.M. is actually a measure of uncertainty rather than 
of an error (in the sense of a mistake), we prefer not to use 
this term.

The 95% Confidence Interval or S(95)
Suppose we wanted to be 95% sure rather than 68% sure 
that another average was in a certain range of an average.  
In fact, often when you are asked to report data based on 
measurements, we would like to have you report the mean 
or average along with a 95% confidence interval with a  "±" 
(plus or minus) sign in front of it.  We will use the notation 
S(95) for this quantity.  

If you were to take a several hundred or more of data 
points,  S(95) would be very close to twice the standard de-
viation of the mean.  For a limited number of measure-
ments, S(95) and twice the S.D.M. are not the same, but 
they tend to be similar to each other.
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Example:

Suppose one measured the length of a shelf four times us-
ing a metre stick and attempted to estimate to the nearest 
0.5 mm. One might get the following values:

l: 1.2390 m, 1.2355 m, 1.2350 m and 1.2365 m

The average of these values is 
<l> = ( 1.2390 m + 1.2355 m + 1.2350 m + 1.2365 m)/4 

The following spreadsheet shows the calculation of the re-
siduals and the standard deviation.

lengths residuals residual^2
1.2390 0.00250 6.25000E-06
1.2355 -0.00100 1.00000E-06
1.2350 -0.00150 2.25000E-06
1.2365 0.00000 0.00000E+00

1.2365 9.50000E-06 Sum of residuals^2
0.00177951304 SD

As you can see, the standard deviation of 0.0018 m shows 
that our estimating to the nearest half millimetre was 
overoptimistic. The average <l> = 1.2365 m is probably 
more accurate than any of the four measurements. It’s un-
certainty, to a 68% confidence, should be quoted as the 
standard deviation of the mean (SDM):

  SDM = 0.001779 m/√4 = 0.00089 m

The standard way of writing the final result, to the correct 
number of significant figures would be:

 <l> = 1.2365 ± 0.0009 m (68% confidence)
 
or

 <l> = 1.2365 ± 0.0018 m (95% confidence).

We are actually keeping a superfluous digit in the average. 
That’s fine if these results are to be used in further calcu-
lations. For a final result it would be preferable to round as 
follows:
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 <l> = 1.237 ± 0.001 m (68% confidence)
 
or

 <l> = 1.237 ± 0.002 m (95% confidence).

✍ Activity 2-12: Calculating the S.D.M. and S(95)
(a) In Activity 2-11 (b)  we recorded, with the help of the com-
puter, 

N = _______

measurements of the counts/interval from a long-lived source.

(b) State the average number of counts/interval below.

(c) The computer determined the Standard Deviation, σ, to be

(d) Use the standard deviation obtained for a large number of 
counting intervals in Activity 2-11 (b) to calculate the Standard 
Deviation of the Mean ( i.e., the S.D.M.)

(b) Since the number of measurements (i.e., determinations of 
counts/interval in Activity 2-11 is large, calculate the approxi-
mate value of the 95% confidence interval ( i.e., S(95)) for this 
measurement.

(c) I am confident on the 68% level that if I repeated Activity 2-
11 that I would obtain an average that is within

   _______ ± __________

of the average we obtained.

(d) I am confident on the 95% level that if I repeated Activity 2-
11 that I would obtain an average that is within
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   _______ ± __________

of the average we obtained.
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