

Unit 12 Homework - Textbook Problems

12. (a) The rotational acceleration is found from Eq. 11-13:

$$\alpha = \frac{2\Delta\theta}{(\Delta t)^2} = \frac{2(25 \text{ rad})}{(5.0 \text{ s})^2} = 2.0 \text{ rad/s}^2.$$

(b) The average rotational velocity is

$$\langle \omega \rangle = \frac{\Delta\theta}{\Delta t} = \frac{25 \text{ rad}}{5.0 \text{ s}} = 5.0 \text{ rad/s}.$$

(c) Using Eq. 11-12, the instantaneous angular velocity at the end of the 5.0 s is

$$\omega_2 = (2.0 \text{ rad/s}^2)(5.0 \text{ s}) = 10 \text{ rad/s}.$$

(d) According to Eq. 11-13, the angular displacement during the following 5.0 s is

$$\Delta\theta = \omega_2 \Delta t + \frac{1}{2} \alpha (\Delta t)^2 = (10 \text{ rad/s})(5.0 \text{ s}) + \frac{1}{2} (2.0 \text{ rad/s}^2)(5.0 \text{ s})^2 = 75 \text{ rad}.$$

18. The wheel begins from rest at time t_1 , with a constant acceleration of $\alpha = 4.0 \text{ rad/s}^2$.

In the interval between t_2 and t_3 , where $t_3 - t_2 = 4.0 \text{ s}$, the wheel turns through an angle of $\theta_3 - \theta_2 = 80 \text{ rad}$.

(a) We seek the value of ω_2 , which we obtain from Eq. 11-13:

$$\theta_3 - \theta_2 = \omega_2 (t_3 - t_2) + \frac{1}{2} \alpha (t_3 - t_2)^2.$$

Solving this for ω_2 yields

$$\omega_2 = \frac{(\theta_3 - \theta_2)}{(t_3 - t_2)} - \frac{1}{2} \alpha (t_3 - t_2) = \frac{(80 \text{ rad})}{(4.0 \text{ s})} - \frac{1}{2} (4.0 \text{ rad/s}^2)(4.0 \text{ s}) = 12 \text{ rad/s}.$$

(b) We obtain $(t_2 - t_1)$ using Eq. 11-12:

$$(t_2 - t_1) = \frac{\omega_2}{\alpha} = \frac{12 \text{ rad/s}}{4.0 \text{ rad/s}^2} = 3.0 \text{ s}.$$

Unit 12 Homework - Textbook Problems

23. (a) Since $\theta = (0.30 \text{ rad/s}^2)t^2$, we differentiate to find $|\omega| = (0.60 \text{ rad/s}^2)t$. At $t = 5.0 \text{ s}$, $|\omega| = (0.60 \text{ rad/s}^2)(5.0 \text{ s}) = 3.0 \text{ rad/s}$.

(b) Eq. 11-18 gives the translational speed as $v = |\omega|r = (3.0 \text{ rad/s})(10 \text{ m}) = 30 \text{ m/s}$.

(c) We differentiate the rotational velocity to find $|\alpha| = 0.60 \text{ rad/s}^2$. Then, the tangential acceleration at $t = 5.0 \text{ s}$ is, using Eq. 11-19,

$$|\vec{a}_t| = |\alpha|r = (0.60 \text{ rad/s}^2)(10 \text{ m}) = 6.0 \text{ m/s}^2.$$

(d) The radial acceleration is given by Eq. 11-20:

$$|\vec{a}_r| = \omega^2 r = (3.0 \text{ rad/s})^2 (10 \text{ m}) = 90 \text{ m/s}^2.$$

24. (a) The rotational speed is

$$|\omega| = \frac{v}{r} = \frac{(2.90 \times 10^4 \text{ km}/3600 \text{ s})}{3220 \text{ km}} = 2.50 \times 10^{-3} \text{ rad/s}.$$

(b) The radial acceleration is given by Eq. 11-20:

$$|\vec{a}_r| = \omega^2 r = (2.50 \times 10^{-3} \text{ rad/s})^2 (3.22 \times 10^6 \text{ m}) = 20.2 \text{ m/s}^2.$$

(c) Assuming the rotational velocity is constant, the rotational acceleration and the tangential acceleration vanish, since

$$\alpha = \frac{d\omega}{dt} = 0 \text{ rad/s}^2 \text{ and } |\vec{a}_t| = |\alpha|r = 0 \text{ m/s}^2.$$

Unit 12 Homework - Textbook Problems

41. According to Table 11-2(i), the rotational inertia of a uniform slab about an axis through the center and perpendicular to the large faces is given by $I_{\text{com}} = \frac{1}{12}M(a^2 + b^2)$. A parallel axis through the corner is a distance

$$h = \sqrt{(a/2)^2 + (b/2)^2}$$

from the center. Therefore,

$$I = I_{\text{com}} + Mh^2 = \frac{1}{12}M(a^2 + b^2) + \frac{1}{4}M(a^2 + b^2) = \frac{1}{3}(a^2 + b^2).$$