

Solutions to Unit 13 Text Book Hwk. Problems

16. If we write $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then (using Eq. 12-16) we find $\vec{r} \times \vec{F}$ is equal to

$$(yF_z - zF_y)\hat{i} + (zF_x - xF_z)\hat{j} + (xF_y - yF_x)\hat{k}.$$

(a) In the above expression, we set $x = -2.0$ m, $y = 0$ m, $z = 4.0$ m, $F_x = 6.0$ N, $F_y = 0$ N and $F_z = 0$ N. Then we obtain $\vec{\tau} = \vec{r} \times \vec{F} = (24\text{N}\cdot\text{m})\hat{j}$.

(b) The values are just as in part (a) with the exception that now $F_x = -6.0$ N. We find $\vec{\tau} = \vec{r} \times \vec{F} = (-24\text{N}\cdot\text{m})\hat{j}$.

(c) In the above expression, we set $x = -2.0$ m, $y = 0$ m, $z = 4.0$ m, $F_x = 0$ N, $F_y = 0$ N and $F_z = 6.0$ N. We get $\vec{\tau} = \vec{r} \times \vec{F} = (12\text{N}\cdot\text{m})\hat{j}$.

(d) The values are just as in part (c) with the exception that now $F_z = -6.0$ N. We find $\vec{\tau} = \vec{r} \times \vec{F} = (-12\text{N}\cdot\text{m})\hat{j}$.

21. If we write (for the general case) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then (using Eq. 12-16) we find $\vec{r} \times \vec{v}$ is equal to

$$(yv_z - zv_y)\hat{i} + (zv_x - xv_z)\hat{j} + (xv_y - yv_x)\hat{k}$$

(a) The rotational momentum is given by the vector product $\vec{\ell} = m\vec{r} \times \vec{v}$, where $\vec{r} = (3.0 \text{ m})\hat{i} + (8.0 \text{ m})\hat{j}$ is the position vector of the particle and $m = 3.0$ kg is its mass. The particle's rotational momentum about the origin is

$$\vec{\ell} = (3.0 \text{ kg})((3.0 \text{ m})(-6.0 \text{ m/s}) - (8.0 \text{ m})(5.0 \text{ m/s}))\hat{k} = (-1.7 \times 10^2 \text{ kg} \cdot \text{m}^2/\text{s})\hat{k}.$$

(b) We write $\vec{F} = F_x\hat{i} = (-7.0 \text{ N})\hat{i}$ and obtain

$$\vec{\tau} = \vec{r} \times \vec{F} = -yF_x\hat{k} = -(8.0 \text{ m})(-7.0 \text{ N})\hat{k} = (56 \text{ N}\cdot\text{m})\hat{k}.$$

(c) According to Eq. 12-24, $\vec{\tau} = d\vec{\ell}/dt$, so the rate of change of the rotational momentum is $56 \text{ kg} \cdot \text{m}^2/\text{s}^2$, in the positive z direction.

28. If we write $\vec{r}' = x'\hat{i} + y'\hat{j}$ and $\vec{v} = v_x\hat{i} + v_y\hat{j}$, then $\vec{r}' \times \vec{v} = (x'v_y - y'v_x)\hat{k}$.

(a) Here, $\vec{r}' = \vec{r} = (3.0 \text{ m})\hat{i} - (4.0 \text{ m})\hat{j}$. Thus, with $\vec{v} = (30 \text{ m/s})\hat{i} + (60 \text{ m/s})\hat{j}$ and $m = 2.0 \text{ kg}$, we obtain the rotational momentum relative to the origin:

$$\vec{\ell} = m(\vec{r} \times \vec{v}) = (2.0 \text{ kg})((3.0 \text{ m})(60 \text{ m/s}) - (-4.0 \text{ m})(30 \text{ m/s}))\hat{k} = (600 \text{ kg} \cdot \text{m}^2/\text{s})\hat{k}.$$

(b) Now, with $\vec{r}_0 = (-2.0 \text{ m})\hat{i} - (2.0 \text{ m})\hat{j}$, $\vec{r}' = \vec{r} - \vec{r}_0 = (5.0 \text{ m})\hat{i} - (2.0 \text{ m})\hat{j}$. The rotational momentum relative to the point \vec{r}_0 is

$$\vec{\ell}' = m(\vec{r}' \times \vec{v}) = (2.0 \text{ kg})((5.0 \text{ m})(60 \text{ m/s}) - (-2.0 \text{ m})(30 \text{ m/s}))\hat{k} = (720 \text{ kg} \cdot \text{m}^2/\text{s})\hat{k}.$$

33. (a) The total rotational inertia is $I = m(3d)^2 + m(2d)^2 + m(d)^2 = 14md^2$

(b) The rotational momentum of the middle particle (particle B) is given by

$$L_B = I_B \omega = m(2d)^2 \omega = 4md^2 \omega.$$

40. (a) Let the first disk be disk A and the second disk B . Rotational momentum is conserved. The rotational speed after coupling is therefore

$$\begin{aligned} |\omega_2| &= \frac{I_A |\omega_{A1}| + I_B |\omega_{B1}|}{I_A + I_B} \\ &= \frac{(3.3 \text{ kg} \cdot \text{m}^2)(450 \text{ rev/min}) + (6.6 \text{ kg} \cdot \text{m}^2)(900 \text{ rev/min})}{3.3 \text{ kg} \cdot \text{m}^2 + 6.6 \text{ kg} \cdot \text{m}^2} \\ &= 750 \text{ rev/min.} \end{aligned}$$

(b) In this case, we obtain

$$|\omega_2| = \left| \frac{I_A |\omega_{A1}| - I_B |\omega_{B1}|}{I_A + I_B} \right| = 450 \text{ rev/min.}$$

The direction of $\vec{\omega}_2$ in this case is the same as the rotational velocity of disk B .

54. Let m and v be the mass and initial speed of the ball and R the radius of the merry-go-round. The initial rotational momentum is

$$L_1 = mvR \sin \theta,$$

where the ball approaches the “lever arm” at an angle of $\theta = 127^\circ$. With I as the rotational inertia of the merry-go-round and m' as the mass of the ball, the rotational momentum after the ball is caught can be expressed as

$$L_2 = [(m + m')R^2 + I]\omega_2,$$

where ω_2 is the rotational velocity of the merry-go-round after the ball is caught.

Conservation of rotational momentum leads to $mvR \sin \theta = [(m + m')R^2 + I]\omega_2$, so the rotational speed of the merry-go-round is

$$|\omega_2| = \frac{mvR \sin \theta}{(m + m')R^2 + I} = \frac{(1.0 \text{ kg})(12 \text{ m/s})(2.0 \text{ m})(\sin 127^\circ)}{(30 \text{ kg} + 1.0 \text{ kg})(2.0 \text{ m})^2 + 150 \text{ kg} \cdot \text{m}^2} = 0.070 \text{ rad/s.}$$