Worksheet based on problems authored by R. Morse at St. Albans School and Worksheets by Randall D. Knight
Name \qquad Sec \qquad Date \qquad CONSTANT ACCELERATION PROBLEM WORKSHEET

1. A Boeing 747 jumbo jet with 400 passengers requires a takeoff speed of about $350 \mathrm{~km} / \mathrm{h}$ with a take-off length of 3.32 km . If the plane accelerates constantly starting from rest, what is the necessary acceleration?

Mass of the jet $=812,300 \mathrm{lbs}$

Worksheet based on problems authored by R. Morse at St. Albans School and Worksheets by Randall D. Knight
Name \qquad Sec \qquad Date \qquad CONSTANT ACCELERATION PROBLEM WORKSHEET
4. On a dry road a Lincoln Mark VIII automobile (Car \& Driver, Feb 1993, p 80) was able to brake with a deceleration of $8.6 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. How much time does the Lincoln take to stop if it is travelling initially at $24.6 \mathrm{~m} / \mathrm{s}$?

Mass of the Lincoln $=1697 \mathrm{~kg}$

Part 5: Description of the Net Force Causing the Acceleration and its Calculation based on a knowledge of the Acceleration

Worksheet based on problems authored by R. Morse at St. Albans School and Worksheets by Randall D. Knight
Name \qquad Sec \qquad Date \qquad CONSTANT ACCELERATION PROBLEM WORKSHEET
7. In a record run, a drag racer accelerated from 0 to $475 \mathrm{~km} / \mathrm{h}$ in 4.88 s (Guiness Book of Records, 1992). Assuming a constant acceleration, how far did it travel during this time?

Mass of the drag racer $=885 \mathrm{~kg}$

| Part 1: Motion Diagram | Part 1: Sketched Graph for Velocity vs. Time |
| :--- | :--- | | To find: |
| :--- |
| Kart 2: Table and Unit Conversions |
| Known: |

Worksheet based on problems authored by R. Morse at St. Albans School and Worksheets by Randall D. Knight
Name \qquad Sec \qquad Date \qquad CONSTANT ACCELERATION PROBLEM WORKSHEET
10. A skydiver is falling through the air at a speed of $200 \mathrm{~km} / \mathrm{h}$ when he opens his parachute, which then gives him a constant deceleration of $8 \mathrm{~km} / \mathrm{h} / \mathrm{s}$. How far does he fall in the next two seconds?

Mass of the skydiver with equipment $=114 \mathrm{Kg}$

Part 1: Motion Diagram	Part 1: Sketched Graph for Velocity vs. Time	
To find:		Part 2: Table and Unit Conversions Equations Known:

Worksheet based on problems authored by R. Morse at St. Albans School and Worksheets by Randall D. Knight
Name \qquad Sec \qquad Date \qquad CONSTANT ACCELERATION PROBLEM WORKSHEET
11. You are driving down a straight highway at $20 \mathrm{~m} / \mathrm{s}(72 \mathrm{~km} / \mathrm{h})$ on a foggy night. Suddenly you see a truck stopped directly in front of you a distance 52 m down the roadway. Assume that your reaction time is 1.0 s and that when you step on the brake you can achieve a maximum deceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$. What will your speed be when you collide?

The car has a mass of 1400 kg .

Part 1: Motion Diagram	Part 1: Sketched Graph for Velocity vs. Time

Part 3: Algebra and Substitution

ANSWER
(with proper sig. fig.)
Part 4: Units Check
Reasonable?

Part 5: Description of the Net Force Causing the Acceleration and its Calculation based on a knowledge of the Acceleration

